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1 Introduction

To write an introduction to the dynamics of open quantum systems may seem
at first a complicated, albeit perhaps unnecessary, task. On the one hand, the



field is quite broad and encompasses many different topics which are covered
by several books and reviews [IH37]. On the other hand, the approach taken
to study the dynamics of an open quantum system can be quite different
depending of the specific system being analyzed; for instance, references in
quantum optics (e.g. [IIOTILIBLI726]) use tools and approximations which
are usually quite different from the studies focused on condensed matter or
open systems of relevance in chemical physics (e.g. [8,13,27,30,33]). More-
over, very rigorous studies by the mathematical physics community were car-
ried out in the 1970’s, usually from a statistical physics point of view. More
recently, and mainly motivated by the development of quantum information
science, there has been a strong revival in the study of apen many body sys-
tems aimed at further understanding the impact of d\e{:éerence phenomena
on quantum information protocols [3§]. A

This plethora of results and approaches can bgte confusing to novices
in the field. Even within the more experien scientists, discussions on
fundamental properties (e.g. the concept of \\/l%)vianity) have often proven
not to be straightforward when researches@ m different communities are
involved.

Our motivation in writing this work l&'been to try to put black on white
the results of several thoughts and dig iions on this topic with scientists of
different backgrounds during the lastN¢hree years, as well as putting several
concepts in the context of moder %‘evelopments in the field. Given the ex-
tension of the topic and the ay i}ility of many excellent reviews covering
different aspects of the physi §§>f open quantum systems, we will focus here
on one specific issue and t}%is embedding the theory as usually explained
in the quantum optical litQa ure within the mathematical core developed in

the mathematical physjsg)community. Finally, we make a connection with
the current view point ™ the dynamics of open quantum systems in the light
of quantum inform science, given a different, complementary, perspec-

tive to the meanin®Of fundamental concepts such that complete positivity,
dynamical semigroups, Markovianity, master equations, etc.

In order to do this, we will restrict the proof of important mathemat-
ical results to the case of finite dimensional systems; otherwise this study
would be much more extensive and potentially interested people who are not
expert in functional analysis or operators algebras, could not easily bene-
fit from it. However, since the most important application of the theory of
open quantum system nowadays is arguably focused on the field of controlled
quantum technologies, including quantum computation, quantum communi-
cation, quantum metrology, etc., where the most useful systems are finite (or
special cases of infinite systems), the formal loss of generality is justified in
this case. The necessary background for this work is therefore reduced to



familiarity with the basics of quantum mechanics and quantum information
theory.

Furthermore, we have tried to incorporate some novel concepts and tech-
niques developed in the last few years to address old problems such that those
exemplified by the use of dynamical maps, Markovian and non-Markovian
evolutions or microscopic derivations of reduced dynamics. We have orga-
nized the presentation as follows. In section 2l we introduce the mathematical
tools required in order to ensure a minimum degree of self-consistency in the
study; a mathematical experienced reader may skip this part. In section [ we
review very succinctly the concept of “closed quantum system” and discuss
its time evolution. We explain in section M the general features of dynamics
of open quantum systems and its mathematical pro ids. Section [l deals
with the mathematical structure of a very special"nmportant dynamics in
open quantum systems, which are the Markovia ?ﬁantum processes. The
microscopic derivation of Markovian quantum %mics is explained in sec-

tion [B] whereas some methods for obtainin -Markovian dynamics are
briefly introduced in section [l Finally, we lude the review by making a
summary of the main ideas we have discu@d, and the topics that we have
left out, in the section 8 Q'

Q_

2 Mathematical to N

2.1 Banach spaces, H&-s and linear operators

In different parts within th:%work, we will make use of some properties of
Banach spaces. For our indérest it is sufficient to restrict our analysis to finite
dimensional spaces. I at follows we revise a few basic concepts [39-41].

Definition 2.1. A&%aah space B is a complete linear space with a norm

Recall that a space is complete if every Cauchy sequence converges in it.
An example of Banach space is provided by the set of self-adjoint trace-class
linear operators on a Hilbert space H. This is, the self-adjoint operators
whose trace norm is finite || - ||,

Al = Tr VATA=Trv A2, AecB.

Now we focus our attention onto possible linear transformations on a
Banach space, that we will denote by T'(%8) : B — B. The set of all of them
forms the dual space B*.



Proposition 2.1. The dual space of B, B* is a (finite) Banach space with
the induced norm

T(x "
i = s @ o e, T e m
veBa0 ||| 2€B||z]=1

Proof: The proof is basic.

Apart from the triangle inequality, the induced norm fulfills some other
useful inequalities. For example, immediately from its definition one obtains
that

IT@) < ITNll=ll, vz eB. (1)

Moreover,

Proposition 2.2. Let T} and Ty be two linear ope@mﬁs in B*, then
Tl < HH\HB@ (2)
Proof. This is just a consequence of the ineQRth (@); indeed,

NIl = sup  [[Wh(2)]| < s ||T1||||T2 ) =T
z€B,||z||=1 zeB,s||=1

QQ- Q.E.D.

N
The next concept will appear; @te often in the forthcoming sections.

S

Definition 2.2. A linear opeéator T on a Banach space ‘B, is said to be a

contraction if V"
Q@)II <llall, veem,

this is || 7] < 1.
Finally, we brifgeévise some additional basic concepts that will be fea-

tured in subsequerfsgections.

Definition 2.3. For any linear operator 7" on a (finite) Banach space B, its
resolvent operator is defined as

Rr(\) = (M —T)"1, ) e C.

It is said that A € C belongs to the (point) spectrum of 7', A € o(T), if Rr())
does not exist; otherwise A € C belongs to the resolvent set of T', A € o(T).
As a result o(T") and o(7T) are said to be complementary sets.

The numbers A € (T are called eigenvalues of T', and each element in
the kernel z € ker(A\ —T'), which is obviously different from {0} as (A1 —T")~"
does not exist, is called the eigenvector associated with the eigenvalue \.



2.2 Exponential of an operator

The operation of exponentiation of an operator is of special importance in
relation to linear differential equations.

Definition 2.4. The exponential of a linear operator L on a finite Banach

space is defined as
Ln
€L = E ﬁ (3)

The following proposition shows that this definition is indeed meaningful.
Proposition 2.3. The series defining e* is absolute@wergent.

Proof. The following chain of inequalities holds

Z Z ||L"|| %? L||" Gl

n=0
Since el“l is a numerical series which is Qergent the norm of e” is upper
bounded and therefore the series Convagg- absolutely.

le®|l =

Q.E.D.

Proposition 2.4. If L, and L, @rmute with each other, then eF1t12) =
eliel? = elzelt,

Proof. By using the binomgrr mula as in the case of a numerical series, we
obtain

+

S
z L SR e
Qh n=0 k=0

il =20 AL = et = et
n=0 k=0 ’ p=0 q=0 P-q:

Q.E.D.

The above result does not hold when L; and L, are not commuting op-
erators, in that case there is a formula which is sometimes useful.

Theorem 2.1 (Lie-Trotter product formula). Let Ly and Ly be linear oper-
ators on a finite Banach space, then:

. Ly La\™
ellitle) — iy (e nen ) .
n—oo



Proof. We present a two-step proof inspired by [42]. First let us prove that
for any two linear operators A and B the following identity holds:

n—1
A"—B" =) AYA-B)B"* (4)

k=0

We observe that, in the end, we are only adding and subtracting the products
of powers of A and B in the right hand side of (@), so that

A" —B" = A" 4 (A"'B—- A""'B) - B"
= A"+ (A"'B - A"'B+ A" ?B? — A" ?B?) - B" =
— A" 4 (A"'B— A"'B 4 A"?B? — ‘Z?%Q
AB" ") — B"

Now we can add terms with positive sign to ﬁnd%

An_i_Anle_i__'_Aanl &AknLankl’
k=0

and all terms with negative sign to ob
n—1
—AY'B— . — AB@- B" = — ZA’?BH.

Finally, by adding both COIltI‘lé&thIlS one gets that

n—1
_ B = Z AkJr@%k L_ pkpgrn—k _ Z Ak<A _ B)ankfl’

k=0

as we wanted to proQg
Now, we denot

Xn — e(LlﬂLL2)/"7 Yn — eLl/neLQ/n’

and take A = X,, and B =Y, in formula (),

n—1
Xr -y = ZX::(Xn — Y)Yk
k=0
On the one hand,
HXSH = ” ( (L1+L2) /n) H < ”e(LlJrLz /n”k < €||L1+L2||k/"

< ILlHIL2E/m < Ll IEl g < .



Similarly, one proves that
[VH] < el vk <

So we get

n—1

-1
Xy =Yl < ZIIX’“(X — Y)Y < ZIIXSIIIIXn—Yn||||Y7?_k_1||
k=0

< Z 1 X, — V|| EIHIZ2) — 1 X, — Y, || 2L IHIEDD,
k=0
Q

On the other hand, by expanding the exponential W& d that

X1 (L1 + Ly \& Ly
;kv( n &i;ok'j( )(n)

"ILII}Q-ﬁ ! 5[La, L] + O (nl )H =0.

Therefore we finally conclude that: Q'

n—o0

v. Q.E.D
Using a similar procedureqﬁ can also show that for a sum of N operators,
the following identity h(;@;

. N n
QQ_GZIIcV—l Ly, — nlggo (H e%) . (5)

k=1

lim n||X,-Y,|| = lim n
n—o0 n—oo

= lim || X = Y| =0.

n—o0

2.3 Semigroups of operators

Definition 2.5 (Semigroup). A family of linear operators T (¢ > 0) on a
finite Banach Space forms a one-parameter semigroup if

1. T,T, = Ty, Vt,s

2. Ty = 1.



Definition 2.6 (Uniformly Continuous Semigroup). A one-parameter semi-
group 7} is said to be uniformly continuous if the map

t— 1T,

is continuous, this is, lim;,, ||7; — Ts|| = 0, Vs. This kind of continuity is
normally referred to as “continuity in the uniform operator topology” [39],
and it is sufficient to analyze the finite dimensional case, which is the focus
of this work.

Theorem 2.2. IfT; forms a uniformly continuous one-parameter semigroup,
then the map t — Ty is differentiable, and the dem’vatz’v&ngt s given by

ar, <

TSmO
dt g
with L = %hzo. %

Proof. Since T; is uniformly continuous on QXE function V'(t) defined by

[
V(t)= | Tgsy t>0,
Oin-

is differentiable with d‘g—it) =T Qo_,justify this, it is enough to consider
the well-known arguments useigj@ the case of R, see for example [43], but

substituting the absolute valu the concept of norm). In particular,

i V@) _ hQQX) —V(0) _dv()

t—0 6 t dt

this implies that ther&cist some t; > 0 small enough such that V(¢y) is
invertible. Then, Q

=Ty=1,
t=0

T, = V' (t)V(t)T; = v—l(to)/to T.Tyds = V1(ty) /ta Ty sds
= V7 (ty) /HtO Tuds =V to) [V(t+to) — V(1)],

since the difference of differentiable functions is differentiable, 7T} is differen-
tiable. Moreover, its derivative is
i, . T —T T, -1
— = lim ————— = lim
dt  h—0 h h—0

T, = LT;.

Q.E.D.



Theorem 2.3. The exponential operator T(t) = el

the differential problem

1s the only solution of

dt

IO — 1 7(t), teRT,
T(0) = 1.

Proof. From the definition of exponential given by Eq. (B, it is clear that
T(0) = 1, and because of the commutativity of the exponents we find
delt pL(t+h) _ Lt olh _q
)

A I
P W h

By expanding the exponential one obtains \2\\

Lh _q 141 2
lim & o LH LR OO SN

h—0  h h—0 h %‘
At this point, it just remains to prove uniquenhss. Let us consider another
function S(¢) and assume that it also satisﬁe&%e differential problem. Then
we define

Q(s) = T(s)S(t — s),Qi?or t>5>0,
for some fixed ¢ > 0, so Q(s) is dif‘felﬁm.ble with derivative
dQ(s)
ds
Q(s) is therefore a constant fnction. In particular Q(s) = Q(0) for any
t > s > 0, which implies tha V’
7(t) = 8PSt - 1) = () = Q) = ().
& QE.D.

3

= LT(s)S(t—s) —T(t)LS(/%\;) = LT(s)S(t—s)— LT(H)S(t—s) = 0.

Corollary 2.1. A@ uniformly continuous semigroup can be written in the
form T, = T(t) = e, where L is called the generator of the semigroup and
it 1s the only solution to the differential problem

{%:LTh t€R+

Given the omnipresence of differential equations describing time evolution
in physics, it is now evident why semigroups are important. If we can extend
the domain of ¢t to negative values, then T, forms a one-parameter group
whose inverses are given by T_;, so that T;T_, = 1 for all t € R.

There is a special class of semigroups which is important for our proposes,
and that will be the subject of the next section.

10



2.3.1 Contraction semigroups

Definition 2.7. A one-parameter semigroup satisfying ||7;]| < 1 for every
t > 0, is called a contraction semigroup.

Now one question arises, namely, which properties should L fulfill to
generate a contraction semigroup? This is an intricate question in general
that is treated with more detail in functional analysis textbooks such as [44}-
46]. For finite dimensional Banach spaces, the proofs of the main theorems
can be drastically simplified, and they are presented in the following. The
main condition is based in properties of the resolvent set and the resolvent

operator. ~

Theorem 2.4 (Hille-Yoshida). A necessary and s tent condition for a
linear operator L to generate a contraction semiggp 15 that

1. {\,ReX >0} C o(L). \k_
2. |RyWI| < (Re ). QX

Proof. Let L be the generator of a contydcrion semigroup and A\ a complex
number. For a > b we define the oper@r

L(a,b) §?€<M+L>tdt.

Since the exponential series Céﬁverges uniformly (to see this one uses again
tools of the elementary analys), specifically the M-test of Weierstrass [43], on
the Banach space B) it isQ sible to integrate term by term in the previous

definition
— n b
M ( / t"dt)
n! "

L(a,b)/abigz%ﬂdt _
- (=A1 + L)" {bn“ a"“] |

n+1_n+1

M 100

n!

I
o

Thus by multiplying L£(a,b) by (Al — L) we get
(M — L)L(a,b) = L(a,b)(A\l — L) = [e(w\HL)a _ e(f)\ILJrL)b} .

Now assume Re A > 0 and take the limit a — 0, b — oo, then as

lim [l = Tim (e e < lim e A][|e"|
b—o0 b—o0 b—o0
< lim e =0,
b—o0

11



and

lime

—)\IlaeLa — ]l,
a—0

we obtain

(M — L) { /0 h e_nte”dt] = { /0 h e_nte”dt] (M —L)=1.

So if ReA > 0 then A € (L) and from the definition of the resolvent operator

we conclude -
Rp(\) = / e Mteltdt,
0

Moreover, \2\\
(o] & o
||RL()\)|| — ’ / e—AILteLtdtH / )\IlteL@S / )\ILtHHeLtHdt
0 0
o 1
< — A1t dt = — At d 7 — Re()\ ]
< [ | - F%

Conversely, suppose that L satisfies QE' above conditions [I and [2 Let A
be some real number in the resolvent Qﬁ-of L, which means it is also a real
positive number. We define the ope

I ~Z> NLR()\

and it turns out that Ly — )\ — 00. Indeed, it is enough to show that
ARp(A) — 1. Since (0, o(L) there is no problem with the resolvent
operator taking the limity\$o by writing AR.(\) = LR (\) + 1 we obtain

. ) L
lim [ARL() — 1@ LA, < i L] < Jim I — o

where we have used [2 Moreover,

R e R e P

le = [le

2 _
< e MNIRLOIE < =M AL _ g

and therefore

et = lim et
A—00

is a contraction semigroup.

Q.E.D.

12



Apart from imposing conditions such that L generates a contraction semi-
group, this theorem is of vital importance in general operator theory on ar-
bitrary dimensional Banach spaces. If the conditions of the theorem [2.4] are
fulfilled then L generates a well-defined semigroup. Note that for general
operators L the exponential cannot be rigourously defined as a power se-
ries, and more complicated tools are needed. On the other hand, to apply
this theorem directly can be complicated in many cases, so one needs more
manageable equivalent conditions.

Definition 2.8. A semi-inner product is an operation in which for each pair
x1, T of elements of a Banach space B there is an associated complex number

[x1, 2], such that \2\\

(1, Aza + pas] = Nxy, xa] + p avmg (7)
(0, 1] = a2 ®)
1, 22]] < HmHHm@' (9)

Q

Definition 2.9. A linear operator L %_%- is called dissipative if

for any x1,x9,x3 € B and A\, u € C.

elx Lx@ Vo € 8. (10)

Theorem 2.5 (Lumer—Phillip& necessary and sufficient condition for a
linear operator L on B (of fgdte dimension) to be the generator of a con-
traction semigroup is that dissipative.

Proof. Suppose that {T§ > 0} is a contraction semigroup, then just by
using the properties OQ'semi—inner product we have that:

3

Relz, (T; — 0%_

Re[z, Tiz] — ||=|* < |[z, Tia]| - ||=]”
eI Texll = flll* < 2 l*IT2l] = ll=]* < 0,

IN

as ||T;]] < 1. So L is dissipative

1
Relz, Lz] = lim p Relz, (T3 — 1)z] < 0.

t—0

Conversely, let L be dissipative. Considering a point within its spectrum
A € o(L) and a corresponding eigenvector = € ker(Al — L). Since [z, (A1 —
L)z] = 0 we have

Re[z, (Al — L)z] = Re(\)||z|* — Re[z, Lz] = 0,

13



given that Relx, Lz] < 0, Re(\) < 0. Thus any complex number Re(\) > 0
is in the resolvent of L. Moreover, let A € o(L), again from the properties of
a semi-inner product we have that

Re(\)||z|* = Re(\) [z, 7] Re(A[z, z] — [z, Lz]) = Relz, (A1 — L)x]

<
< lz, (AL = L)z]] < [lz||[|(AL = L)x]],

so [[(AL — L)z|| > Re(A)||z]|, Yz # 0. Then, by setting x = (Al — L)Z in the
expression for the norm of Ry (\):
R T
”RL<)\>H = sup || L( ) || _ sup || || _
cesaro |7 ie%,iziker()\ﬂ—\?\ M — L)z

Izl A1

Re(\)| @ g Re()\)’

and therefore L satisfies the conditions of the blze’orem 24
Q.E.D.

2.4 Evolution families Q-

3

As we have seen semigroups arise r@lrally in the context of problems in-
volving linear differential equatio s exemplified by Eq. (@), with time-
independent generators L. Howedgpsome situations in physics require solving
time-inhomogeneous differenti roblems,

reB
to —56’07

where L(t) is a time, g;endent linear operator. Given that the differential
equation is hnear olution must depend linearly on the initial conditions,
SO we can write

.T(t) = T(t,to)x(tO)a (11>
where T(; ) is a linear operator often referred to as the evolution operator.
Obviously, T{s,+) = 1 and the composition of two consecutive evolution

operators is well defined; since for t, > t; >ty

x(ty) = T(tl,to)ff(to) and xz(ty) = T(tQ,t1)$(t1)-

The evolution operator between t5 and ty is given by

T(t2,t0) = T(tQ,tl)T(tl,t0)7 (12)

14



and the two-parameter family of operators T{; , fulfills the properties

Tus) = TunIps), t=r=s (13)
Tis,s) = 1.

These operators are sometimes called evolution families, propagators, or fun-
damental solutions. One important fact to realize is that if the generator
is time-independent, L, the evolution family is reduced to a one-parameter
semigroup in the time difference T{; ) = T>—;_,. However, in contrast to gen-
eral semigroups, it is not enough (even in finite dimension) to require that
the map (¢, s) — T(:.5) be continuous to ensure that it is differentiable [47], al-
though in practice we usually assume that the temporal @yolution is smooth
enough and families fulfilling Eq. (I3 will also ¢ E%ered to be differen-
tiable. Under these conditions we can formulate t}?-following result.

Theorem 2.6. A differentiable family T, ob%i_ng the condition (13) is the
only solution to the differential problems V

and

Proof. 1f the evolution fami (t,s) is differentiable

dTy,.s Tn & Ties Tsnn — 1
CORT (t+h\,§ &) _ lim MT@@ = L(t)T 1)

dt h—0 Q_ h—0 h

Analogously one p@‘i that

dT(LS)

= —TuaL(t).
ds (t’)()

To show that this solution is unique, as in theorem 23] let us assume that

there exist some other S s solving both differential problems. Then, for

every fixed ¢ and s, we define now Q(r) = TSy for t > r > s. It is
dQ(r)

immediate to show that = =0 and therefore

Tiis) = Q(s) = Q) = Sits)-
Q.E.D.
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Again opposed to the case of semigroups, to give a general expression for
an evolution family T, ) in terms of the generator L(t) is complicated. To
illustrate why let us define first the concept of time-ordering operator.

Definition 2.10. The time-ordered operator T of a product of two operators
L(t1)L(ty) is defined by

TL(t)L(ts) = 0(t; — t2)L(t1)L(ts) + 0(ts — t1)L(ts)L(t),

where 0(x) is the Heaviside step function. Similarly, for a product of three
operators L(t1)L(ty)L(t3), we have

T L(t1)L(t2)L(t3) = 0(t1 — t2)0(ta — t3)L(t \tQ)L(tg)

+ 6(t; — t3)0(ts — t2) L(t3)L(ts)

+ O(ta — t1)0(t1 — t3sBt2) L(t1) L(t3)

F Oty — t3)0(ts —TL(t2) L(ts) L(1))

+ 6t — 10 Q) L) L(t) Lt

+ 0(ts — t2)— 11) L(t3) L(t2) L(11),

so that for a product of k operators -« L(ty) we can write:
TL(th) -~ L(ty) = f»g\ﬁ' Oltx—1) = tro)l Llte()] -+ Lltw(i)s
/\‘2\ (14)

where 7 is a permutation of gaexes and the sum extends over all k! different
permutations.

Theorem 2 7 Dyso ies). Let the generator L(t') to be bounded in the
interval [t, s], t. < oo, t' € [t,s]. Then the evolution family T s
admits the followz ries representation

T(t,s):]1+z_:/s / /m L(t) -+ Llbn)dbm - -dts,  (15)

where t >t > ... > 1, > s, and it can be written symbolically as

> t t
T(t,s) = Teld LWt — q 4 Z % / .. / TL(ty) - L(ty,)dty - - - di,.
m=1 ‘ S S
(16)
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Proof. To prove that expression (IZ) can be formally written as (I6]) note
that by introducing the time-ordering definition Eq. (I4), the k" term of
this series can be written as

1 t t
E/ e / TL(ty) - L(ty)dty - - - dity,
1 U rlrn) lr(k—1)
= E Z/ / .. / L[tﬂ(l)] - -L[tﬂ(k)]dtl oo dty,

t rt le—1
:// / L(tl)---L(tk)dtk---dtl,

where in the last step we have used that ¢ > ;) > .Q?t,r(k) > s, and that
the name of the variables does not matter, so the suimover 7 is the addition
of the same integral k! times.

To prove Eq. (IH), we need first of all to sho ’ﬁt the series is convergent,
but this is simple because by taking norms iu@ we get the upper bound

2|t —s™
[T < Y = (sup () =exp[sup HL(t’>H|t—s\],
m=0 ¢

m! re[s,t] t'els,t]

which is convergent as a result of @ being bounded in [t, s]. Finally, the
fact that (IH) is the solution of t ifferential problem is easy to verify by

differentiating the series term erm since it converges uniformly and so
does its derivative (to see thigdue uses again the M-test of Weierstrass [43]
on the Banach space B). % Q.E.D.

This result is the welN&own Dyson expansion, which is widely used for
instance in scattering Zieory. We have proved its convergence for finite di-
mensional systems ayyl bounded generator. This is normally difficult to prove
in the infinite dime@ nal case, but the expression is still used in this context
in a formal sense.

Apart from the Dyson expansion, there is an approximation formula for
evolution families which will be useful in this work.

Theorem 2.8 (Time-splitting formula). The evolution family T s can be
given by the formula

0
Tihe = lim el =t L) forp =t > . >t) = s, 17
(t,s) ma""ff“tfhojl;[_l J = = lo (17)

where L(t;) is the generator evaluated in the instantaneous time t; (note the
descending order in the product symbol).
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Proof. The idea for this proof is taken from [48], more rigorous and general
proofs can be found in [44}[45]. Given that the product in (I7) is already
temporally ordered, nothing happens if we introduce the temporal-ordering
operator

0

Ths = lim T H elti+1—t;) L(t;)

’ max|tj+17tj|~>0 . ’
j=n—1
— lim T 2520 (i1 =) L(t;)

max|tj+17tj|~>0 ’
where one realizes that the time-ordering operator is t making the work
of ordering the terms in the exponential series in the om term in order to

obtain the same series expansion as in the top term/Wow it only remains to
recognize the Riemann sum [43] in the exponent é%rrive at the expression

Tus) = Tel L(t/)dtv\g'

which is Eq. (I4]). § Q.E.D.

In analogy to the case of contractigm sémigroups, one can define contrac-
tion evolution families. However, si e have now two parameters, there
is not a unique possible deﬁnition\‘&&,ﬂlustrated below.

Definition 2.11. An evolutio %ily Tt,s) is called contractive if ||T( 4| < 1
for every t and every s such éﬁ t>s.

Definition 2.12. An ev ﬁ)n family T(; ) is called eventually contractive
if there exist a sg such b«@ |7 t,50) || < 1 for every t > sq.

It is clear that active families are also eventually contractive, but
in this second case@Weére exist a privileged initial time sy, such that one can
have ||T{;q| > 1 for some s # so. This difference is relevant and will allow
us later on to discriminate universal dynamical maps given by differential
equations which are Markovian from those which are not.

3 Time evolution in closed quantum systems

Probably time evolution of physical systems is the main factor in order to
understand their nature and properties. In classical systems time evolution
is usually formulated in terms of differential equations (i.e. Euler-Lagrange’s
equations, Hamilton’s equations, Liouville equation, etc.), which can present
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very different characteristics depending on which physical system they cor-
respond to. From the beginning of the quantum theory, physicists have been
often trying to translate the methods which were useful in the classical case to
the quantum one, so was that Erwin Schrodinger obtained the first quantum
evolution equation in 1926 [49].

This equation, called Schrodinger’s equation since then, describes the
behavior of an isolated or closed quantum system, that is, by definition, a
system which does not interchanges information (i.e. energy and/or matter
[50]) with another system. So if our isolated system is in some pure state
|i(t)) € H at time ¢, where H denotes the Hilbert space of the system,
the time evolution of this state (between two consecutjgg measurements) is
according to

d _ A
1Y) = ——H( )I@D(t))v. (18)

where H(t) is the Hamiltonian operator of the @m. In the case of mixed
states p(t) the last equation naturally induce&‘g'
dp(t) 52
dt

sometimes called von Neumann or L1 e-von Neumann equation, mainly
in the context of statistical physics.@om now on we consider units where
h=1. N

There are several ways to juiZ'@ the Schrodinger equation, some of them
related with heuristic approackgs or variational principles, however in all of
them it is necessary to mak We extra assumptions apart from the postu-
lates about states and obsgiNables; for that reason the Schrodinger equation
can be taken as anothe stulate. Of course the ultimate reason for its
validity is that the exg@sEmental tests are in accordance with it [51H53]. In
that sense, the Schr@dirrger equation is for quantum mechanics as fundamen-
tal as the Maxwel@equations for electromagnetism or the Newton’s Laws
for classical mechanics.

An important property of Schrodinger equation is that it does not change
the norm of the states, indeed

) = (%) [0(8)) + (0 (1) (%) _
— i@ ORe(0) — i HB6() =0, (20)

as the Hamiltonian is self-adjoint, H(t) = H'(t). In view of the fact that the
Schrodinger equation is linear, its solution is given by an evolution family

Ult,r),

(19)

[¥(8)) = Ut to)[¥(t0)), (21)
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where Ul(tg,to) = 1.

The equation (20)) implies that the evolution operator is an isometry (i.e.
norm-preserving map), which means it is a unitary operator in case of finite
dimensional systems. In infinite dimensional systems one has to prove that
Ul(t,to) maps the whole H onto H in order to exclude partial isometries, this
is easy to verify from the composition law of evolution families [54] and then
for any general Hilbert space

Ul(t, to)U(t to) = U(t, to)UT(t,tg) =1 = Ut = U (22)

On the other hand, according to these definitions for pure states, the
evolution of some density matrix p(t) is

Q\
p(ty) = Ulty, to)p(te)UT tl,té (23)

We can also rewrite this relation as

o) = U n 6@3 (24)

where Uy, 44 is a linear (unitary [55]) O}Q’ator acting as

Q_

Upr o) [1=U (Qto (U (11, 1) (25)

\
Of course the specific form Dihe evolution operator in terms of the
Hamiltonian depends on the p rties of the Hamiltonian itself. In the sim-

plest case in which H is tim Wependent (conservative system), the formal
solution of the Schodinger ation is straightforwardly obtained as

Q9 Ult, tg) = e (-t H/m, (26)

When H is time-d dent (non-conservative system) we can formally write
the evolution as a D¥son expansion,

U(t, to) = Telo T (27)

Note now that if H(t) is self-adjoint, —H (t) is also self-adjoint, so in
this case we have physical inverses for every evolution. In fact when the
Hamiltonian is time-independent, U(ty,ty) = U(t; — ty). So the evolu-
tion operator is not only a one-parameter semigroup, but a one-parameter
group, with an inverse for every element U~!(7) = U(—7) = U'(7), such
that U~ (7)U(7) = U(r)U~'(7) = 1. Of course in case of time-dependent
Hamiltonians, every member of the evolution family U(¢, s) has the inverse
U=Y(t,s) = U(s,t) = U'(t, s), being this one also unitary.
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If we look into the equation (24]), we can identify p as a member of the
Banach space of the set of trace-class self-adjoint operators, and U, ;) as
some linear operator acting on this Banach space. Then everything con-
sidered for pure states concerning the form of the evolution operator is also
applicable for general mixed states, actually the general solution to the equa-
tion (I9) can be written as

p(t) = Uy 1o)p(te) = Telo ™ p(ty), (28)

where the generator is given by the commutator £;(-) = —i[H(t),-]. This is
sometimes called the Liouvillian, and by taking the derivative one immedi-

ately arrives to (I9). \z\
A

4 Time evolution in open &tum systems

Consider now the case where the total Hilbe @paee is decomposed into two
parts, in the form H = H 1 ® Hp, each subRace corresponding to a certain

quantum system; the question to answ then, what properties does the
time evolution of each subsystem haveA -
First of all, one must establish relation between the total density

matrix p € H and the density matdix of a subsystem, say A, which is given
by the partial trace over the ot@ubsystem B:

A
Nl Trp(p). (29)
~

There are several ways t@Qustify this; see for example [38,56]. Let us focus
first in the description measurement of the system H 4 viewed from the
whole system H = H 4 Hp. For the system H 4 a measurement is given by
a set of self—adjoinﬁ'sitive operators { M.} each of them associated with a
possible result k. pose that we are blind to the system B, and we see the
state of system A as some p4. Then the probability to get the result k£ when
we make the measurement {M;.} will be

pa(k) = Tr(Mypa).

Now one argues that if we are viewing only the part A through the measure-
ment M;, we are in fact observers of an extended system H through some
measurement M), such that, for physical consistency, for any state of the
composed system p compatible with p4 which is seen from A (see figure [II),
the following holds

pa(k) = Tr(Mkp).
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But assuming this is true for every state p4, we assume that ]\ka is a genuine
measurement operator on H, which implicitly implies that is independent of
the state p of the whole system on which we are making the measurement.
Now consider the special case where the state of the whole system has the
form p = pa ® pp, then the above equation is clearly satisfied with the choice
M, =M, 1,

pa(k) = Tr(Mipa) = Tr[(M), ® 1)pa ® pp] = Tr(Mypa) Tr(pp) = Tr(Mypa).

Actually this is the only possible choice such that M, is independent of the
particular states p4 and pp (and so of p). Indeed, imagine that there exist
another solution, M, independent of p, which is also @ Penuine measure on
‘H, then from the linearity of the trace we would geyqz\

palk) = Tr(Mipa) = To(My @ 1p) = Te(Vp) <N — My 1)) =0,
for all p4 and so for all p. This means v\&-

for any self-adjoint operator o, therefgre @s the set of self-adjoint operators
forms a Banach space this implies ZWQ M, ®1 = 0 and then M, = M, ® 1.

N
o [aR
> & |O——(] |4
@ﬁ% ,% M,
S

My,
Figure 1: On the lde&&'d’e we perform a measure over the combined system A
and B, which we te by M}, but we have “disconnected” the information
provided by B. If one assume that this situation is equivalent to a measure

M, only the system A, this is illustrated on the right side, then My = M, ®1
(see discussion on the text).

Once established this relation, one can wonder about the connection be-
tween pa and p. If {[¢)|4)7)} is a basis of # then

palk) = Te[(Mi @ 1)p] = 3 (@371 (My @ Dol Mf)
= D WM Iy} = Tr(Mpa),
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hence p4 is univocally given by the partial trace

pa =Y _(WPplef) = Trp(p).
J4

One important property of the partial trace operation is that, even if
p = |¥) (1| was pure, p4 can be mixed, this occurs if |¢) is entangled.

Given the total density matrix p(to), by taking the partial trace in (23]),
the state of A at time ¢y, pa(t1), is given by

pa(ty) = Trp[U(t, o) p(to)U' (11, 10)]- (30)
Provided that the total evolution is not factorized U(t 1, to) = Ua(t1,t0) ®
Ug(t1,to), both quantum subsystems A and B are inteschanging information

with each other (they are interacting), and so they ar,é\ en quantum systems.

%

Let us set A as our system to study. A natu ask arising from the equation
([B0) is trying to rewrite it as a dynamzcal acting on H 4 which connects
the states of the subsystem A at times tQand ti:

Etto) /JA§—> pa(ts).

The problem with this map is tl?ag&.general it does not only depend on the

4.1 Dynamical maps

global evolution operator U (ty, d on the properties of the subsystem B,
but also on the system A itsel&

In order to clarify this,éms write the total initial state as the sum of
two contributions [57]:

Q
p@: pA<t0) & pB(tO) + pcorr(t0>7 (31>

where the term pcor,QU-)' is not a quantum state; satisfies

TrA [pcorr (tO)] - TrB [paorr(t(])] - 07

and contains all correlations (classical as well as quantum) between the two
subsystems. The substitution of [B1I) in (B0) provides

palty) = Trp{U(t1,t0)[pa(to) ® ps(to) + peorr(to)]UT (1, 10)}
= Z Xi Tep{U(t, to)[pa(to) @ [vi) (Vi JUT (11, 10)}

+ Trg[U(t1, to) peorr(to)UT (t1, )]
= Z Kot to)pa(to) KL (11, o) + dp(tr, to)

= 5?;1,t0)[p14<t0)]7 <32>
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where o = {i,j}, Kpji(ti,to) = VAi(¥;|U(t1,t0)|¢s) and we have used
the spectral decomposition of pp(ty) = >, A1) (¢i]. Apparently the op-
erators K, (t1,tg) depend only on the global unitary evolution and on the
initial state of the subsystem B, but the inhomogeneous part dp(ti,ty) =
Trp[U(t1, to) peorr (to)UT (t1, 9)] may no longer be independent of ps because
of the correlation term p.,. [58]. That is, because of the positivity require-
ment of the total density matrix p(ty), given some pa(ty) and pp(ty) not any
Peorr(to) 18 allowed such that p(ty) given by (B1]) is a positive operator; in the
same way, given pa(ty) and peo(to) not any pp(ty) is allowed.

A paradigmatic example of this is the case of reduced pure states. Then
the following theorem is fulfilled.

Q)
Theorem 4.1. Let one of the reduced states of a b&%ﬁite quantum system
be pure, say pa = |V) (Y|, then peorr = 0. X

Proof. Indeed, let us consider first that p :\%w (1| is pure as well. By
using the Schmidt decomposition of |¢) = 3g=A;|w;, v;), where for all ¢ in
the sum A; > 0, and {|u;)} and {|v;)} are@normal basis of H4 and Hp
respectively, we obtain Q_

pa="Trp

Q-
> K m] = 37 W2 (il (33)
i,] ,)\ )

It is elementary to show that ure state cannot be written as non-trivial
convex combination of anoth?two states [59,[60]; then one coefficient, say
Ay must be equal to one, Ai = 0 for all 4 # ¢'. This implies that p has
the product form Q

) Q&u & fow) o] = 1) (6] @ 1) .

If p is mixed, it Ca&e written as convex combination of pure states

p=> pulti) (Wl,
k

if pff) = Tra(|tor) (Yr]), the state of A is
PA = Zpkpff))
k

but as p, is pure, we have only two possibilities, either some ppr = 1 and
pr = 0 for k # k' or pf) is the same state p4 for every k. In the first
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case p is pure obviously, for the second option let us introduce the Schmidt
decomposition again for each state |¢g) = > A k|wik, Vig):

pa=py) = Tra(jve)(¥u]) Z&M%k )(uikl, Yk

so both A; ; and |u; ) can be taken to be independent of k, and
pa= > Nllui)(ui.

This equation is actually the same as (B3]) and so one Apjs equal to one, and
A; = 0 for all i # 4i'. With these requirements we gew = |uy, vy k), and

finally V‘
%

p =Y el (Wl = piluir, vi k) (s, W,k%
K K e

|u@ U4 | ® k‘vz/,k (%% k| = ‘w> <1/}‘ X PB,

Q.E.D.

Qk.
and hence porr = 0. Q‘
N
\

As a result, the positivity re ment forces each term in the dynamical
map to be interconnected and&%endent on the state upon which they act;
this means that a dynamical with some values of K, (t1, ) and dp(t1, to)
may describe a physical eﬁgn for some states p4(tp) and an unphysical
evolution for others.

Given this fact, a sible approach to the dynamics of open quantum
systems is by mea the study of dynamical maps and their positivity
domains [GIHG6], h@yéver that will not be our aim here.

On the other hand, the following interesting result given independently
by D. Salgado et al. [67] and D. M. Tong et al. [68] provides an equivalent
parametrization of dynamical maps.

Theorem 4.2. Any kind of time evolution of a quantum state pa can always
be written in the form

pA(tl) - Z Ka (tlu f}o, pA) pA<t0)ng (tlv tOv pA) ’ (34>

where K, (t1,to, pa) are operators which depend on the state pa at time tg.
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Proof. We give here a very simple proof based on an idea presented in [64].
Let pa(ty) and pa(t1) be the states of a quantum system at times ¢y and ¢,
respectively. Consider formally the product p4(to) ® pa(t:) € Ha ®@ Ha, and
a unitary operation Uswap which interchanges the states in a tensor product
Uswap|th) ® ) = [ihy) @ [1), s0 Uswap(A ® B)Ulyp = B® A. Tt is

evident that the time evolution between p4(ty) and pa(t;) can be written as

Etrio)pato)] = Tra [Uswappa(to) ® pA(tl)UgwAp} = pa(t1),

where Try denotes the partial trace with respect to the second member of
the composed state. By taking the spectral decomposﬁﬁln of pa(t1) in the
central term of the above equation we obtain an expr oh of the form (B4]).

Q.E.D.

Note that the decomposition of ([34]) is clearly ngémlque For more details
see references [67] and [6§]. \%

It will be convenient for us to understa e dependence on py of the
operators K, (t1,to, pa) in (34) as a result oRN#miting the action of ([B2). That
is, the above theorem asserts that restric‘gg he action of any dynamical map
B2)) from its positivity domain to a gmatl enough set of states, actually to
one state “ps” if necessary, is equivad@)t to another dynamical map without
inhomogeneous term dp(t1,to). HQxever this fact can also be visualized as
a by-product of the specific nor\%\ ar features of a dynamical map as (32I)
[69470)].

As one can already gue Q‘the absence of the inhomogeneous part will
play a key role in the dy cs. Before we move on to examine this in the
next section, it is worthN\®marking that C. A. Rodriguez et al. [7T1] have
found that for some clgyses of initial separable states p(ty) (the ones which
have vanishing qua; discord), the dynamical map (B4) is the same for a
set of commuting es of ps. So we can remove the dependence on p, of
K, (t1,t0, pa) when applying (34]) inside of the set of states commuting with

PA-

4.2 Universal dynamical maps

We shall call a universal dynamical map (UDM) to a dynamical map which is
independent of the state it acts upon, and so it describes a plausible physical
evolution for any state p4. In particular, since for pure pa(to), peorr(to) =0,
according to (B2) the most general form of a UDM is given by

pa(ty) = Ey i) [palto)] ZK (t1, t0) palto) K, (t1, o), (35)
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in addition, the equality
ZKl (tl,t(]) Ka (tl,to) - ]1 (36)

is fulfilled because Tr[pa(t1)] = 1 for any initial state p4(tp). Compare (34

and (33]).

An important result is the following (see figure [2)):
Theorem 4.3. A dynamical map is a UDM if and only if it is induced from
an extended system with the initial condition p(to) = pa(to) ® pp(te) where
pr(to) is fized for any pa(to).

Proof. Given such an initial condition the result is eldmentary to check.
Conversely, given a UDM (BH) one can always con Hz? the extended state

p(to) = palto) ® |[¥)p(Y], with |[V)p € Hp fixed f Very state pa(to), and
so K, (t1,t0) = B(¢a|U(t1,t0)|Y)) s, where |¢a>ﬁs a basis of Hp. Since
K, (t1,19) only fixes a few partial elements of %1, tp) and the requirement
([B6)) is consistent with the unitarity conditi@?’

ZB (@IU (11, 1) da) B(@al Ut to) W)Q-QB (@|UY(t1, t0)U (1, to) [¥) 5
QQ- = (Y[l ®@1¢)p =1,

such a unitary operator U (ty, o) @Eys exists.

&\2\ Q.E.D.

V' .
palto) ® e30te) — ) o in(ty)

@' Trg

Ety t
pa(to) Gt)  y palty)

Figure 2: Schematic illustration of the result presented in theorem

Moreover UDMs possess other interesting properties. For instance they
are linear maps, that is for pa(ty) = >, )\Z-pfz) (to) (with A\; > 0 and >, N\ = 1),
a straightforward consequence from definition of UDM is

Etr o) [pa(to)] Z i€ty o) [PA) (to)]-
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In addition, UDMs are positive operations (i.e. the image of a positive op-
erator is also a positive operator).

Furthermore, a UDM holds another remarkable mathematical property.
Consider the following “Gedankenexperiment”; imagine that the system AB
is actually part of another larger system ABW, where the W component
interact neither with A nor with B, and so it is hidden from our eyes, playing
the role of a simple bystander of the motion of A and B. Then let us consider
the global dynamics of the three subsystems. Since W is disconnected from A
and B, the unitary evolution of the whole system is of the form Usg(t1, o) ®
Uw (t1, o), where Uy (11, to) is the unitary evolution of the subsystem W. If
the initial state is papw (to) then ~

pasw(t1) = Uap(ti,t0) @ Uw(t1, tO)ﬂABW@O)U,ZQQZTtO) ® Uy (t1, o).
Note that by taking the partial trace with respe@ W we get

pap(t) = Uap(ti,to) Trw [UW t1, to) pasg=to UT t17to)} UAB(thto)

= Uag(t1,1o) TI"W w(t, %_@/(tbto PABW to)} Uilg(thto)
= Uap(ti,to)pan(to UAB

so indeed the presence of W does perturb the dynamics of A and B.
Since we assume that the evolutioRN \F A is described by a UDM, according
to the theorem [£.3] the 1n1t1a1&03§1t10n must be pag(to) = pal(to) ® ps(to),
and then the most general al condition of the global system which is
compatible with that has ggof the form papw(to) = paw(to) ® pr(to),
where pg(ty) is fixed for Qy paw (to). Now let us address our attention to
the dynamics of the s@tem AW:

paw (t1) = Trp [U§Ul, to) @ Uw (t1, to) paw (to) ® pr(to)
Uls(ti,to) ® Ul (t1.t0) |

by using the spectral decomposition of pg(ty), as we have already done a
couple of times, one obtains

paw(t) = ZKa (t1,t0) @ U (t1, to) paw (to) K1 (t1, t0) @ Ul (t1, o)

- g(thto) ® u(tl,to) [,OAW(to)] .

Here £y, 4,) is a dynamical map on the subsystem A and the operator U, 1,)[-] =

Uw (1, to)[]UL, (t1, o) is the unitary evolution of W. As we see, the dynami-
cal map on the system AW is the tensor product of each individual dynamics.
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So if the evolution of a system is given by a UDM, &, 4,), then for any uni-
tary evolution Uy, 4,y of any dimension, £, 1) ® Uy, 1) is also a UDM; and
in particular is a positive-preserving operation. By writing

g(tl,tO) ® u(tlvto) = [g(tlvto) ® ]1] []1 ® u(tl,tO)] )

as 1 ® Uy, 1) 1s a unitary operator, the condition for positivity-preserving
asserts that £y, 4) ® 1 is positive. Linear maps fulfilling this property are
called completely positive maps [72].

Since we can never dismiss the possible existence of some extra system
W, out of our control, a UDM must always be completely positive. This may
be seen directly from the decomposition (33]). The reversg statement, i.e. any
completely positive map can be written as ([B]), is SEous result proved
by Kraus [7]; thus the formula (B0 is referred as Hatis decomposition of a
completely positive map. Therefore another deﬁrgﬁ of a UDM is a (trace-
preserving) linear map which is completely positive, see for instance [211138].

Complete positivity is a stronger require%ﬁ than positivity, the best
known example of a map which is positive ot completely positive is the
transposition map (see for example [38]),8&0 1t cannot represent a UDM. It
is appropriate to stress that, despite th&crystal-clear reasoning about the
necessity of complete positivity in t olution of a quantum system, it is
only required if the evolution is givetwby a UDM, a general dynamical map
may not possess this property 670 69,[70]. Indeed, if dp(ty,te) # 0,
Et1.40) given by ([B2) is not pos't@b for every state, so certainly it cannot be
completely positive. In addiéﬁ note that if papw (to) # paw(to) ® pr(to)
we can no longer express t@ ynamical map on AW as £y, 40) @ Uy, 1), SO
the physical requirement Qf complete positivity is missed.

4.3 Universal flynamical maps as contractions

Let us consider n@the Banach space B of the trace-class operators with
the trace norm (see comments to the definition [Z1]). Then, as we know, an
operator p € B is a quantum state if it is positive-semidefinite, this is

(Plpl) =20, [¢) e H,

and it has trace one, which is equal to the trace norm because the positivity
of its spectrum,

p € B is a quantum state < p >0 and ||p[[; = 1.

We denote the set of quantum states by B+ C B, actually the Banach space
B the smallest linear space which contains B+, in other words, any other
linear space containing 87" also contains B.
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We now focus our attention in possible linear transformations on the
Banach space £(*B) : B — B, and in particular, as we have said in section
2.1l the set of these transformations is the dual Banach space B*, in this
case with the induced norm

PEB,p£0 1oll1

Particularly we are interested in linear maps which leave invariant the
subset BT, i.e. they connect any quantum state with another quantum
state, as a UDM does. The following theorem holds

Theorem 4.4. A linear map £ € B* leaves invam’ant"ﬁ* if and only if it
preserves the trace and is a contraction on ‘B R

€] < 1. %V

Proof. Assume that £ € B* leaves invariant thset of quantum states B,
then it is obvious that it preserves the trag Vmoreover, it implies that for

every positive p the trace norm is preservesl&so [|€(p)|[1 = [|pl[1. Let o € B
but o ¢ B, then by the spectral deco ition we can split o = o — 0™,
where

ot =3 Aly) @q-for)\ >0,

oo =-> )\ , for \; <0,

here A; are the eigenvalues and }?wﬂ the corresponding eigenvectors. Note
that o and o~ are both posi operators Because [);)(1);| are orthogonal
projections we get (in othepbrds as [o|[y = >, [As]):

olly = o™l + llo~ [,

but then

1E@)]lx = lI€(o Q%_ M < IE@DN+IE ) = llo ™ i+llo™ [l = lloh,

so £ is a contraction.
Conversely, assume that £ is a contraction and preserves the trace, then
for p € BT we have the next chain of inequalities:

lplly = Tr(p) = Tr[E(p)] < I€(P) I < llplly,

so lE(p)ll. = llplls and Tr[E(p)] = [|E(p)l1- Since p € B* if and only if
llplli = Tr(p) = 1, the last equality implies that E(p) € BT for any p € B+,
QE.D.

This theorem was first proven by A. Kosakowski in the references [73l[74],
later on, M. B. Ruskai also analyzed the necessary condition in [75].
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4.4 The inverse of a universal dynamical map

Let us come back to the scenario of dynamical maps. Given a UDM, &, ),
one can wonder whether there is another UDM describing the evolution in
the time reversed sense &, 4,) in such a way that

g(to,tl)g(thto) =&, g(thto) =1

(t1,to)

Note, first of all, that it is quite easy to write a UDM which is not bijective
(for instance, take {|1,,) } to be an orthonormal basis of the space, then define:

E(p) = 32, |6) (Yl pltia) (8] = Tr(p)]6) (], being | ) am arbitrary fixed state).

and so the inverse does not always exist. But even if4df is mathematically
possible to invert a map, we are going to see that i neral the inverse is

not another UDM. &

Theorem 4.5. A UDM, &y, 1), can be inverted @nother UDM if and only
if it is unitary Eq, i) = Uy o) -

Proof. The proof is easy (assuming Wign§ theorem) but lengthy. Let us
remove the temporal references to make g_ otation less cumbersome, so we
write £ = &, 4,). Since we have show t UDMs are contractions on ‘B,

1€ ()l g\@l, —

Let us suppose that there exist DM, £, which is the inverse of &£; then
by applying the above inequalﬁy twice

v
lollx Idglf(a)Hl < [IE(@)llx < ol

and we conclude that Q_
QQ' IE@) = llolls, Vo e %. (37)

Next, note that such an invertible £ would connect pure stares with pure
states. Indeed, suppose that |¢)(¢] is a pure state, and E(|¢)(¢]) is not,
then we can write

E(lV)Wl) =ppr + (1 =p)p2, 1 >p>0,

for some p; # pa # E(|Y)(¢]). But after taking the inverse this equation
yields
) (W] =pE (p1) + (1= P)ET (p2),

and €71 is a (bijective) UDM, £7(p;) # £ (p2) are quantum states; so such
a decomposition is impossible as [¢) (1| is pure by hypothesis; and a pure
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state cannot be decomposed as a non-trivial convex combination of another
two states.

Now consider o = (J11) (1] — [02)(to]) for two arbitrary pure states
|th1) (1| and |19)(1hs]. We can calculate its eigenvalues and eigenvectors
by restring the computation to the two dimensional subspace spanned by
|1h1) and |¢9); because any other state [i)) can be decomposed as a linear
combination of |1);), [1)2) and |1} ), such that o], ) = 0. Thus the eigenvalue
equation reads

olalgn) + Blve)) = Aalr) + Blis)),

for some A, a and . By taking the scalar product with respect to (4| and
(19|, and solving the two simultaneous equations one ﬁd‘s

1 A
S MR s

so the trace norm |||y = >_; [A;] turns out to*&e’

lolly = V1 = [{Qyr) > (38)

However, since £ connects pure statesQi‘c pure states,

Q o
£(0) = €011} wnl) ~ £UQHHI)] = (10} (8] — 1) (),

and therefore from equations &\ and (B8) we conclude that

X o
Qﬁﬂd’l” = |<¢2|1/11>‘-

Invoking Wigner’s the@ [54,59], the transformation £ have to be imple-
mented by v
<§2‘ E=VpVi,

where V' is a unitary or anti-unitary operator. Finally since the effect of an
anti-unitary operator involves the complex conjugation [54], that is equivalent
to the transposition of the elements of a trace-class self-adjoint operator,
which is not a completely positive map; we conclude that V' has to be unitary,
Etrto) = Uty t0)-

N —

Q.E.D.

From another perspective, the connection between the failure of an inverse for
a UDM to exist just denotes the irreversibility of the universal open quantum
systems dynamics.
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4.5 Temporal continuity. Markovian evolutions

One important problem of the dynamical maps given by UDM is related with
their continuity in time. This can be formulated as follows: assume that we
know the evolution of a system between ¢y and t1, £y, 4, and between ¢; and
a posterior time t5, £, 4,). From the continuity of time, one could expect that
the evolution between ¢y and ¢, was given by the composition of applications,
Etarto) = Etat)E(t1,40)- However, the exact meaning of this equation has to
be analyzed carefully.

Indeed, let the total initial state be p(to) = pa(to) ® pp(to), and the uni-
tary evolution operators Ul(tq,t1), U(t1,tg) and Ul(te, to) = Ul(ta, t1)U(t1, o).
Then the evolution of the subsystem A between ¢, and ¥y subsequent ¢ is
clearly given by, &22\

Etr.to)[Pa(to)] = Trp[U(t1, to) palte) @ p(to)UT (1 28))]

— &KQ (t1,to) palto) K] (t1, to)

and Q_

g(tmto)[pfl(to)] TIB[ t2>t0 PA to to tQ,to

,5\\ Ko (t2, to) palto) K, (t2, to) .

The problem arises with & t27@\2\

Ettrnylpa(ty)] = Trp[U b%)p(tl VU (tg,t1)]
Q— _ZK t2’t1’p‘4> pA<t1)Klz (t27t17p14)7

being p(t;) = g_pA (to) ® pa(to)]UT(t1,t0). Since p(t;) is not a tensor
product in general and it depends on what initial states were taken for both
subsystems, £y, ) has not the form of an UDM (see figure ).

Let us to illustrate this situation from another point of view. If the
application &, 4,) is bijective it seems that we can overcome the problem by
defining

g(t27t1) = 5(t2,t0)g(;11,t0)’ (39)
which trivially satisfies the relation £y, ) = )€1 ,t0)- However, as we
have just seen, S(t o) is not completely positive unless it is unitary, so in
general the evolution E(ty1y) 18 still not a UDM [76].

The same idea can also be used to define dynamical maps beyond UDM
[T7]. That is, given the global system in an arbitrary general state p(to),
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UDM
UDM

t() tl\/tz

not UDM

Figure 3: General situation describing the dynamics of open quantum sys-
tems in terms of a UDM. At time ¢, the total state is assumed to be factor-
ized, p(to) = pa(to) ® pp(to), and the dynamical maps from this point are
UDMs. However it is not possible to define a UDM frqudsome intermediate
time t; > ty, because generally at this time the totaqzate can no longer be
written as a tensor product. %V

if this is not a tensor product, we know th%t least in some past time
tinitial, before the subsystems started inteer ng, the state was factorized
P(tinitial) = pa(tinitial) @ pB (tinitial)- 1f we age to find a unitary operation
U~ (to, tinitia) which maps p(to) to the st ¢ P(tinitial) = P (Linitia1) © B (Linitial)
for every reduced state pa(tg) comp e with p(ty), having pp(finiia) the
same for all p4(ty), we can describ posterior evolution from ¢, to t; as
the composition of the inverse mapatrd the UDM from ti,;;a1 to 1 as in (B9).
However to find such an unitalx\zperator can be complicated, and it will not
always exist.

On the other hand, as @erenee with the dynamics of closed systems,
it is clear that these diffic€Qties arising from the continuity of time for UDMs
make it impossible to f late the general dynamics of open quantum sys-
tems by means of difféential equations which generate contractive families
on B (i.e. families DMs). However, sometimes one can write down a
differential form fotlN¢he evolution from a fixed time origin ¢y, which is only a
valid UDM to describe the evolution from that time ¢y. In other words, the
differential equation generates an eventually contractive family from ¢, on %5
(see definition 212).

To illustrate this, consider a bijective UDM, & ;), then by differentiation
(without the aim to be very rigorous here)

dpa(t) _ A& _ ) oy _
A0 — S )] = S lpa(t)] = Lilpa(d)], (40)
where £; = dg(él’f(’)g(;’io). This is the ultimate idea behind the “time convolu-

tionless” method which will be briefly described in section [[.2l If the initial
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condition is given at ty, then, by construction, the solution to the above
equation is pa(t) = &) lpalto)]. Nevertheless, there is not certainty that
the evolution from any other initial time is a UDM. Indeed, as we may guess,
it is not difficult to write solutions given the initial condition p(t1) (t1 > to)

as (39).

Definition 4.1. We will say that a quantum systems undergoes a Markovian
evolution if it is described by a contractive evolution family on 8 and thus
we recover the composition law for the UDMs

g(t27t0) = 5(t2,t1)g(t17t0)7 (41)
o ) o
which is the quantum analogue to the Chapman- Q?hogorov equation in
classical Markovian process (see next section[B.]]). 1I>property is sometimes
also referred as “divisibility condition”. %

Typically, the dynamics of an open quan& system is not Markovian,
because as we have already said both systeg YA and B develop correlations
Peorr during their evolution and so the red dynamical map is not a UDM
for some intermediate starting time ;. }Qﬁfever if the term which goes with
Peorr does not affect so much the dy@niics, a Markovian model can be a
good approximate description of ti@volution. We will analyze this deeply

in section N
@)
S

5 Quantum Magfkov process: mathematical

Before studying under@ﬁich conditions can an open quantum system be ap-

proximately descri y a Markovian evolution, we examine in this section
the structure and perties of quantum Markovian process.

structure

5.1 Classical Markovian processes

To motivate the adopted definition of a quantum Markov process, let us recall
the definition of classical Markov processes. More detailed explanations can
be found in [T4,2T1[78[79]; here we just sketch the most interesting properties
for our purposes without getting too concern with mathematical rigor.

On a probability space, a stochastic process is a family of random variables
{X(t),t € I C R}. Roughly speaking, a stochastic process is specified by
a random variable X depending on a parameter ¢ which usually represents
time. Assume that [ is a countable set labeled by n, then a stochastic process
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is a Markov process if the probability that the random variable X takes a
value z,, at any arbitrary time t,,, is conditioned only by the value z,_; that
it took at time ¢,,_1, and does not depend on the values at earlier times. This
condition is formulated in terms of the conditional probabilities as follows:

p(xnatn|xn—17tn—1;---;antO) :p(xnatn|xn—1)7 \v/tn el (42)

This property is sometimes expressed in the following way: a Markov process
does not have memory of the history of past values of X. They are so-named
after the Russian mathematician A. Markov.

Consider now this process on a continuous interval I, then t,_; is time
infinitesimally close to t,. So for any ¢ > t' just fre.lg the definition of
conditional probability \2\

pla, t;2', ) = pla, t|2’, £ )p(/PY,

where p(z, t; 2, t') is the joint probability that random variable X takes value
x at time ¢ and 2’ at time ¢'. By integrating@ respect to 2’ we find the
relation between unconditional probabilitt§

o= fasng i

and let us write it as Q

N
p(az,t):/da:K(:U t!, t)p \2}9 with K (z, t|2', ') = p(z, tl’, ). (43)

The Markov process is calle %mogeneous if K(z,t|a’,t") is only a function
of the difference between two time parameters involved K (z,t|z’,t") =
Ky y(z|x').

Next, take the join(probability for any three consecutive times t3 > to >
t; and apply again t@ efinition of conditional probability twice

p($3,t3;9€2,t2;&t1) = p(ws, ts|xe, to; 21, t1)p(T2, to; 215 11)
= pl(ws, ts|xe, to; x1, t1)p(z2, ta| 21, t1)p(21, 11).

The Markov condition implies that p(zs,ts|za,to;x,t1) = p(xs,t3|ra, ts),
then by integrating over xo and dividing both sides by p(z1,t;) one gets

plrs, tslay, ty) = /d$2P($37t3|x27t2)p($2,t2|5€1,t1)7

which is called Chapman-Kolmogorov equation. Observe that with the nota-
tion of ([A3)) this is

K(Ig,tgll’l,tl) :/dl’gK(.ﬁL’g,t3|I‘2,t2)K<.§L’2,t2|SL’1,t1). (44)
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Thinking of K (z,t|2’,t") as propagators of the time evolution between ¢’ and
t (see Eq. A3]), equation (44)) express that they form evolution families with
that composition law. Moreover, since K (x,t|2’,t") are conditional probabil-
ities they connect any probability p(z’,¢') with another probability p(x,t) so
in this sense they are universal (preserve the positivity of p(z’,t') and the
normalization).

We can now draw a clear parallelism with a quantum setting. In the
definition of quantum Markov process (definition [4.1]), the role played by the
probabilities p(z,t) is played by the density operators p(t) and the role of
conditional probabilities p(x, t|2’,t') is played by UDMs & vy, such that ()
is the quantum analog to the classic Chapman—KolmogQK)V equation (44)).

5.2 Quantum Markov evolution as @ifferential equa-
tion =

For positive ¢, consider the difference v\g'

p(t+e)—p(t) = [Etre0)—Ew0)]P(0) = [Entad 110 [P(0)] = [Eren—1]p(t),

provided that the limit € — 0 is well ted (we assume that time evolution
is smooth enough). We can obtair@ linear differential equation for p(t)
(called master equation)

D
dp(t) _y;, P+ €) — lim MP@) =Lip(t),  (45)

dt e—0 e—0 €
where by definition the gQ%uﬁor of the evolution is

Q_ E —hm tJret ]1]
Q— t e—0

If some quantuQevolution is Markovian according to our definition [4.1]
we may wonder what is the form of these differential equations. The answer
is given by the following theorem, which is the main result of this section.

Theorem 5.1. A differential equation is a Markovian master equation if and
only if it can be written in the form

o _ O+ Y e [ OV (1) — ST (ViD) p(1)}|

(46)
where H(t) and Vi(t) are time-dependent operators, with H(t) self-adjoint,
and v (t) > 0 for every k and time t.
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Proof. Let us show the necessity first (for this we follow a generalization of
the argument given in [9] and [21] for time-independent generators). If &g, )
is a UDM for any ¢y > t; it admits a decomposition of the form

Eta ]l = Z Ka(ta, t1)pK L (t2, th).

Actually, let {Fj,j = 1,...,N?} be a complete orthonormal basis with re-
spect to the Hilbert-Schmidt inner product (Fj, Fj)us = Tr(F}Fk) = d;i, in
such a way that we chose Fiy2 = 1/ V/N and the rest of operators are then
traceless. Now the expansion of the Kraus operators in this basis yields

Ewanlpl =D cirlta, tl)Fijg@

J.k &
where the elements V
Cj(ta; th) = Z (£, Ka(t2,11)) @a (t2,11))

form a positive semidefinite matrix c(ts, tlqugeed, for any N2-dimensional
vector v we have that

(v,c(ta, tr)v Zv Cik(t2, t)ve = (ka Fiy, Ka(t2, 1))y )
\'a k

Since this holds for any to > tl{zf@ us take t; =t and ty = t + €, then the

generator reads A

C'k‘(t—i-ﬁY).F-pFT—]l : 1 cyep2(t+€6,t) — N
Gy = lmd s o Ty
j?k

2
> 0.

p

+ (47)

Now, we define the time-dependent coefficients a,(t) by
CNQNQ(t -+ G,t) — N

aNzNz(t) = 15% c s
ine (T t
a’]NQ(t) = 1%@7 j:17"'7N2_17
i (¢ t
a’jk(t) = l%wa j,k‘zl,...,NQ—]_,
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the following operators,

PO = = Y awlF,

Gt = S0+ % [Fi(t)+ F(1)]

and
Ht) = 5 [F1(1) — F(0)]

which is self-adjoint. In terms of these operators the generator (7)) can be

written like \
N2-1 \2\

Lolp) = —i[H(t), p] + {G (1), 0} + > (D) FjpFy.

o

Since the UDMs preserve trace for every den@ matrix p,

2G(t)<§§: a;i(t)FF;

~]k1

0="Tr[Li(p)] =T {

and therefore we conclude that Q

N
22

7,k=1

Note that this is nothing&% the condition Y Kl (t2,t1)Ko(ta,t1) = 1 ex-
pressed in differential Wa\y> Thus the generator adopts the form

ajr(t)FlF;.

N2-1
1
Lilp) = A+ X ) |Forl - 5{ELF 0} .

Q J,k=1

Finally note that because of the positive semidefiniteness of ¢;,(t + €, 1), the
matrix a;x(t), j,k = 1,...,N? — 1 is also positive semidefinite, so for any ¢
it can be diagonalized by mean of a unitary matrix u(t); that is,

Z U () an () s, () = Yin () O,

where each eigenvalue is positive v,,(¢) > 0. Introducing a new set of opera-
tors Vi(t),

N2-1 N2-1
Vi(t) = > up(OF;,  Fy = ug(t)Vi(t),
j=1 k=1
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we obtain the desired result
Lu(p) = WL [ 00V (1) — STV OVi(0). 0}

with v (t) > 0, Vk, t.

Assume now that some dynamics is given by a differential equation as
Q). Since it is a first order linear equation, there exists a continuous family
of propagators satisfying

g(tg ,t()) - g(tg ,t1 ) g(tl ,to) )
Eupy = 1, N

for every time to > t; > ty. It is clear that these plépagators are trace pre-
serving (as for any p, Tr(L;p) = 0). So we have @ove that for any times
to >t the dynamical maps &, 1,y are UDMs, orjequivalently completely pos-
itive maps. For that we use the approximatio%mulas introduced in section
B} firstly the time-splitting formula al § to write the propagator like

Ly (t1+1 7) (48)

max |t/

g(t27t1 = hmtﬁ_i |

where to =t >t | > ... >t 4§\N ext, take any element of this product
ITZ&TZ—tz+1 tz>0

and since the constants ”@ are positive for every time, we can write this
generator evaluated at ns tant t, as

1 - .
£y() = - Hg§kﬂ+§jb@wx> 1) — LT, ()]
where Vk (t)) = /vk(t))Vi(t;). Now we split this generator in several parts,
M ~
Ly => Ly,
k=0
where

Vin(t2), (4)}, (49)

l\DI»—t

Lo(-) = — }j



and here M is the upper limit in the sum over & in (4@). On one hand,
differentiating with respect to 7 one can easily check that

eimp _ 6{[ iH(t)) Zk%~Ij(t2)\~/k(t2)]7}pe{[iH(t%)fzk%VJ(t%)Vk(tz)]T}

which has the form OpOT, so it is completely positive for all 7. On the other
hand, for 7 > 0

CoT OOTm~m CrTm
“p:§jaﬂ;wwW'%x

has also the Kraus form Y O,,pO! | so it is completely positive for all k.
Now everything is ready to invoke the Lie-Trotter produy formula (B), since

M A NN
et = e(Zho L) = iy (@)

is the composition (infinite product) of co Eely positive maps Lt/ "ot
is completely positive for all 7. Finally, becise this is true for every instan-

taneous t, the “time-splitting” formula (@ asserts that &y, ) is completely
positive for any t5 and t;, because it is @t another composition of completely

positive maps [80]. Q

N QED.

'5
This result can be taken as obal consequence of the works of A. Kos-
sakowski [73,[74,81] and G. L lad [82], who analyzed this problem for the

case of time-homogeneous @a’mons that is, when the UDMs depend only

on the difference 7 =t s Etat1) = & and so they form a one-parameter

semigroup (not a grm%\gcause the inverses are generally not a UDM, see
Q

, under the continuity assumption, & = e*™ can be

theorem [I.5]). As we
defined and the ge tor L is time-independent, moreover it has the form
Lo(t) = —ilH, p(t) +Z%hpw Ve 6

This is the result proven by Gorini, Kossakowski and Sudarshan [81] for finite
dimensional semigroups and by Lindblad [82] for infinite dimensional systems
with bounded generators, that is, for uniformly continuous semigroups [46].

5.3 Kossakowski conditions

It is probably worthwhile to dedicate a small section to revise the original
idea of Kossakowski’s seminal work [73l[74,[8T], as it has clear analogies with
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some results in classical Markov processes. The route that A. Kossakowski
and collaborators followed to arrive at (&1l) was to derive some analogue to
the classical Markovian conditions on the generator £. That is, for classical
Markov process in finite dimensional systems, a matrix () is the generator
of an evolution stochastic matrix e?7 for any 7 > 0 if only if the following
conditions in its elements are satisfied:

Qi <0, Vi, (52)
Qij >0, Vi # j, (53)
Z Qi =0, Vi. (54)

The proof can be found in [78]. To define snmlar Coﬂ\a%\wns in the quantum

case, one uses the Lumer-Phillips theorem 2.5] as ™ has to be a con-
traction semigroup in the Banach space of self— nt matrlces with respect

to the trace norm. For that aim, consider the t definition.

Definition 5.1. Let o € B, with spectral Qcomposition o= Zj o;jP;. We
define the linear operator sign of o as o

sgn(o) = ggn o;)P

o
where sgn(o;) is the sign functio \2’\)} each eigenvalue, that is

aj>0

1, a] < 0
Definition 5.2. We d@rﬂe the following product of two elements o, p € B,
S ol = ol Trisgn(o) (55)

Proposition 5.1. The product (23) is a semi-inner product. In addition it
s a real number.

Proof. The proof is quite straightforward. It is evident that for the product
BH), @) and &) hold. Finally ([@) also follows easily. By introducing the
spectral decomposition of o =) i o; Py,

Z sgn(o;) Tr(P7 p)

J

[0, plx| = llo] < oll legn(aj)\\Tr(Pf’p)l

< ol Y IT(Pyp)
J
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and we also use the spectral decomposition of p = Z p; Py, to obtain

S = 3

< Z|pk|lTr PP
J J

= leler (P7PL) = Z|pk|Tr P =" lpxl = llell
k

k7j

Tr P”Pp

The reality of [0, p|i is clear from the fact that both sgn(o) and p are self-
adjoint.
Q.E.D.

Now we can formulate the equivalent to the Conditio@}, (B3) and (B4) in

the quantum case. V

dimension N ) is the generator of a trace prefsving contraction semigroup
if and only if for every resolution of the det (P, Ps,...,Py), 1 =
>_; Py, the relations

Theorem 5.2 (Kossakowski Conditions). A lm;ﬁpemtor L on B (of finite

&
0 (@12 . N), (56)
0\ £j=1,2,...,N), (57)

(Gj=1,2,...,N) (58)

e
CAC
IV IA

] =

=

2
'47%0
//

are satisfied, where %
ii(B) = Te[RL(P;)].

Proof. The conditio@ is just the trace preserving requirement Tr[L(o)] =
0,0 €B. We haveQ

%

N N
> Ay(R) =) TPL(P) =T[L(P)] =0, VP eP
o Z < Tr[L(0)] =0, Vo eB.
On the other hand, the theorem of Lumer-Phillips asserts that
[0, L(0)]Kk < 0; (59)
taking o to be some projector P we obtain
Tr[P, L(P)] < 0, (60)
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so (BA) is necessary. Furthermore (B9) can be rewritten as

0, L(o)lx = > sen(ow)o; Te[PL(P)] = Y |oj| Tr[PL(F))]

k.j J
+ Y sen(ox)o; TH[RL(P)] <0, (61)
kA
where we have used the spectral decomposition o = Zj o;P; again. By

splitting (B8] in a similar way

Tr[PL(P))] = — ZTI‘[PkE(Pj)]a for each j =1,..., N.
Py
Here note that on the right hand side the sum is L]u@/er the index k (not
over 7). Inserting this result in (&1]) yields

3 o TAL(R)) 2 0 (62

2
where the sum is over the two indexes, wit

arj = |oj][1 — sgn(csgn(o;)] > 0.
Thus for trace-preserving semigroups condition (Gl is equivalent to ([B6])
and (62)). Therefore if (56), (57) a are satisfied £ is the generator of
a trace preserving contraction semdstoup because of (60) and ([62). It only
remains to prove the necessity , that can be seen directly from (62)).
However, it is also possible t Aﬁow it from the definition of generator:
E—1)P; . Tr[PEA (P
Tr[P.L(P;)] = lim&g( Bl _ lim TrlP&r ()]
T—

207

T 70 T
since &, (P;) > 0 as E}Q—a trace preserving and completely positive map.

Q& Q.E.D.

Finally from tl@result, one can prove (BI]). For that one realizes (sim-
ilarly to the necessity proof of theorem [B.]) that a trace and self-adjoint
preserving generator can be written as

N2-1

. 1
Lp=—i[Hpl+ > a {FjPFJ — S {FF 0]
k=1
where H = H' and the coefficients a;i, form a Hermitian matrix. &, is

completely positive (not just positive) if and only if L& 1 (in the place of £)
satisfies the conditions (b)), (1) and (B8). Tt is easy to see [81] this implies
that a;, is positive semidefinite, and then one obtains (&Il by diagonalization.
The matrix aj; is sometimes referred to as Kossakowski matrix [28][83].
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5.4 Steady states of homogeneous Markov processes

In this section we give a brief introduction to the steady state properties of
homogeneous Markov processes, i.e. completely positive semigroups. This is
a complicated topic and still an active area of research, so we only expose
here some simple but important results.

Definition 5.3. A semigroup &, is relaxing if there exist a unique (steady)
state pgs such that &, (pgs) = pss for all 7 and

lim & (p) = pss,

T—00

for every initial state p. &\2\\

Of course if one state pg is a steady state o %emigroup &, it is an
eigenoperator of the operator £, with eigenvalue

57' Pss) = 6LTpss _Y;&
(Pss) Q

and, by differentiating, it is an eigeno tor of the generator with zero
eigenvalue,

E(p@% 0. (63)

If this equation admits more th e solution then the semigroup is ob-
viously not relaxing, and the figpk“state will depend on the initial state, or
might even oscillate inside of A% set of convex combinations of solutions.
However, the uniqueness of solution of equation ([63]) should not presum-
ably be a guarantee for tlrQs migroup to be relaxing. First of all let us point
out the next result.

Theorem 5.3. A ¢ %;tely positive semigroup £ = €™ on a finite dimen-
stonal Banach spaCe)™B has always at least one steady state, this is, there
exists at least a stale pss which is a solution of (63).

Proof. We prove this by construction. Take any initial state p(0); we calcu-
late the average state of its evolution by (this is sometimes called “ergodic
average”)
T
p= lim — / e“" p(0)d7. (64)
0

T—o00 T
It is simple to show that the integral converges just by taking norms

lim H% /O ' e“"p(0)dr

T—oc0

1 T
< lim — £r <1
< Jim 7 [ e o <1
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Because e“" is completely positive, it is obvious that p is a state. Moreover,

p is clearly a steady state

Q.E.D.

The easiest way to show the steady state properties of a finite dimensional
semigroup is by writing the generator and the exponential in matrix form.
In order to do that, let us consider again the Hilbert-Schmidt inner product
on B and a set of mutually orthonormal basis {F;,j = 1,..., N?}, that is
(F}, Fyus = Tr(F]TFk) = d;;. Then the matrix elements of the generator £

in that basis will be ~
Ejk = (Fj, LFk)HS TI'[FTAC(F}&

To calculate the exponential of £, one uses the an block form (in general
L, is not diagonalizable). That is, we look fofi’bams such that £, can be
written as a block-diagonal matrix, S™1LS Vg c® .® £(7 ,of M
blocks where S is the matrix for the Changb) basis, and each block has the

form
1

0 AQ1 :

'5\\ SO
&
KO . . 0N

Here )\; denotes some ﬁﬁlue of £ and the size of the block coincides

L0 —

with its algebraic multjplXity k;. It is a well-know result (see for example
references [46,[84]) thatdhe exponential of £ can be explicitly computed as

eLT _ S@( )’T C( )’T O GE(M)Ts—l
- S (6A176N17) @ (6)\2T6N27) D...0 (e)\MTeNMT) S—l’ (65)

where the matrices N; = £ — \;1 are nilpotent matrices, (Nl)kl =0, and
thus their exponentials are easy to deal with. If £ is a diagonalizable matrix,
N; = 0 for every eigenvalue.

Now we move on to the principal result of this section.

Theorem 5.4. A completely positive semigroup is relazing if and only if
the zero eigenvalue of L is non-degenerate and the rest of eigenvalues have
negative real part.
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Proof. For the “only if” part. The condition of non-degenerate zero eigen-
value of L is trivial, otherwise the semigroup has more than one steady state
and is not relaxing by definition. But even if this is true, it is necessary
that the rest of eigenvalues have negative real part. Indeed, consider some
eigenvalue with purely imaginary part £(o) = i¢o, where o is the associated
eigenvector. By using the fact that e“" is trace preserving
e“T(0) =T = Tr [ (0)] = Tr(0) = €7 Tr(0) & Tr(o) = 0.

So we can split o as a difference of positive operators o = 0, —o_, given by
its spectral decomposition as in the proof of theorem 4. Since Tr(o) = 0,
Tr(o,) = Tr(o_) = ¢, and we can write o/c = p, — g_Nwhere p; are now
quantum states. The triangle inequality with the st;@Z; state pgs reads

le“ (o /e)ll = Nle(ps = p)Il < [l (px w%vfll + e (- = pss)
=[5 (p+) = pssll + e (0 R sl

Thus if the semigroup is relaxing we obtai§m7_>oo le“7(a/c)|| = 0, but this
is impossible as e£7(0) = €70 and Q_

17 (ps = p-)ll = [l (o /) ﬁ;\ll(a/@ll = llo/ell >0, vr.

Conversely, let us denote )\, %’the non-degenerate zero eigenvalue of
L, since the remaining ones ha egatlve real part, according to (G5]) in the
limit 7 — oo the matrix for the semigroup will be

T—00

= S(100eQ-10)S _SDS1 (66)

where QQ_

Er = lim e~ §§ )‘17— >‘27 NW) P . EB( AMT NIVIT) g1

10 - 0

00 - 0
D, = )

00 --- 0

coincides with the projector on the eigenspace associated with the eigenvalue
1. From here it is quite simple to see that the application of €., on any
initial state p written as a vector in the basis of {F};,j = 1,..., N*} will give
us just the steady state. More explicitly, if pgs is the steady state, its vector
representation will be

Vss = [(Fl’ pSS)HSa ceey (FNQa pss)HS]t 5

47



and the condition 7 py = pg is of course expressed in this basis as
Lt
€™ Ve = V. (67)

On the other hand, as we already have said, D, is the projector on the
eigenspace associated with the eigenvalue 1, which is expanded by v, so we
can write Dy = vg(Vgs, -) or D1 = |vg)(vg| in Dirac notation.

As a particular case (7 — 00) of ([61), we have €., vy = Vg, by making a
little bit of algebra with this condition

goovss - SDlsilvss =Vg = SVSS<VSS7 Silvss) = Vg
= SV = mos™g Ve (68)

VSS\,}\
therefore v is eigenvector of S with elgenvalue Vo)
Finally consider any initial state p written as §Eto v, in the orthonor-
mal basis {F},j =1,..., N*}. We have

lim e* v, =E,V,=8SDS” VQy.SVSS Vs, S Vp)

T—00 o

thus using (68)),

(Ve S7v,) @%’ (v, S7'v,)
800 = ss — sS3 C = o
Vp (VSS7 Silvss) v \' M (p) (VSS, Sflvss)

N
and in the notation of states %& erators this equation reads
lim e p-= C(p)pss, for all p.

One can compute C(p) exgficitly and find that C'(p) = 1 for every p, however
this follows from the c, tion that 7 is a trace preserving semigroup.

Q Q.E.D.

This theorem CQ be taken as a weaker version of the result by Schirmer
and Wang [85], which assert that if the steady state is unique then the semi-
group is relaxing (there are not purely imaginary eigenvalues). A particular
simple case is if the unique steady state is pure pss = [10)(¢)|. Then since a
pure state cannot be expressed as a nontrivial convex combination of other
states, the equation (64]) implies that the semigroup is relaxing. This was
also stated for an arbitrary UDM in theorem 8 of reference [36].

On the other hand, it is desirable to have some condition on the struc-
ture of the generator which assures that the semigroup is relaxing as well
as a characterization of the steady states; there are several results on this
topic (see [0,8587HII] and references therein). Here we will only present an
important result given by Spohn in [89].
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Theorem 5.5 (Spohn). Consider a completely positive semigroup, £, = 7,

in B with generator

Lp=—iH p|+> 7 [VkaJ - %{VJVka P}
kel
for some set of indexes I. Provided that the set {Vi, k € I} is self-adjoint
(this is, the adjoint of every element of the set is inside of the set) and the
only operators commuting with all of them are proportional to the identity,
which is expressed as {Vi, k € I} = cl, the semigroup &, is relaxing.

Proof. Since {Vi,k € I} is self-adjoint we can COHSldGI‘ a self—adpmt or-
thonormal basis with respect to the Hilbert-Schmidt p e‘g = ., N?},

such that, as in the proof of theorem [B.1], we chos 1 / \/ and the
remaining elements are traceless. Expanding

N2-1
m=1
D

we rewrite the generator as
= Q‘Q- 1
Lo=—ilH+ 0+ S Qn {FmpFn S p}} ()

where H is the self-adjoint ops@’or

21

’Yk
Uk NQUkm vk N2Ukm) } mo
ke[

and the Hermitian ma@m 1S Ay = Zke 1 YkVkmy,. Now note that we can
trivially chose @y, tQaé strictly positive; for that it is enough to diagonalize
again a,,, and ign@ the members in the sum of (0] which goes with zero
eigenvalue as they do not contribute, and write again the less dimensional
matrix a,,, in terms of the numbers of elements of the basis strictly necessary,
say p < N? —1,

Lp=—i[H o]+ Z amn[ FonpF, — {FnFm,p}}.

m,n=1

Next, consider some a > 0 to be smaller than the smallest eigenvalue of the
strictly positive a,,,, and split the generator in two pieces £ = L1 + Lo with

Ly = az { FpF,, — {FmFm,p}] .
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It is clear that L, is the generator of a completely positive semigroup, and
the same for £, since a,,, — ad,, is still a positive semidefinite matrix. Next,
for some o € B we compute

(0,L3(0))us = Tr[oLy(o —aZTr [(0F),)? — 0 F2]

so Lo has only real eigenvalues smaller or equal to zero. Moreover for the
eigenvalue 0 we have Tr[oLs(c)] = 0 which requires JF), 0] = 0 for m =
1,...,p. But, because of the equation (69), it 1mp}& that [ Vk, ol = 0 for
ke [ and therefore o = ¢l by presupposition.

Now, let £, £; and £, denote the restrlctlon sgj L, and L4 to the sub-
space generated by {F},j =1,...,N° — 1}, thsk-rs the subspace of traceless
self-adjoint operators. Then since L is the erator of a contracting semi-
group all the eigenvalues of £; have real par=smaller or equal to zero. On the
other hand from the foregoing we concl that the spectrum of £, is com-
posed only of strictly negative real n ers, this implies that £ = £1 + £,
has only eigenvalues with strictly n@tgve real part. Indeed, writing L, Ly
and L, in its matrix representation,&(‘, L and Ly, we can split them in their
Hermitian and anti-Hermitian p\?‘\ , e.g.

g - tA + itB)

where bA = (Z’, + Z’,T)§and iB = (Z’, — Z’,T) /2i are Hermitian matri-
ces. Similarly for L1 Q‘d Lo. It is quite evident that the real part of the
spectrum of L is st@ﬂy negative if and only if £, is a negative definite
matrix, (VJ, Lav, 0 for any o € Span{F},j = 1,..., N?—1}. But, since

L =L+ Lo where L4, = (zl n zi) /2 and L5 = (22 v z;) /2, we
obtain

(VU,Z’,AVJ> = (VJ,Z:A1VU> + (VJ,ZZAQVJ) < 0,

as (VO,EA1VU> < 0 and (V0-7EA2V0-> < 0. Thus all the eigenvalues of L

have strictly negative real part.

Finally since the eigenvalues of £ are just the ones of £ plus one (this is
obvious because the dimension of the subspace of traceless operators is just
one less than the whole state dimension N?), and this extra eigenvalue has
to be equal to 0 because theorem asserts that there exists always at least
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one steady state. Therefore £ fulfills the conditions of theorem [5.4] and the
semigroup €7 is relaxing.

Q.E.D.

For checking if some semigroup satisfies the conditions of this theorem
it is sometimes useful to explore if the operators {Vj, k € I} correspond to
some irreducible representation of a group. Then we may invoke the Schur’s

lemma [T00].

6 Microscopic description: Markovian case

As we have already pointed out, the dynamics of an
notably different from that of a closed system; bot
damental points of view. Essential questions as t
valid dynamics or the continuity in time of thes&_
for the evolution of open quantum systems.
Generally it would be necessary to descifide the evolution in the extended
closed system, and trace out the state af, end of the evolution. Unfortu-
nately, many times, one of the Sy%%ﬁ out of our control, and/or it has

quantum system is
m practical and fun-
existence of universally
come non-trivial matters

an infinite number of degrees of fre , such that the task of calculating
the associated Kraus operators can\b®/difficult and impractical. That is the
case for example of a finite N —di{'%nsional system coupled with an infinite

dimensional one; according to 8~ ([BHl), we would obtain, in principle, infi-
nite terms in the sum. Howeggr it can be easily shown that any completely
positive map on a N-dimea®dnal system can be written with at most N2

Kraus operators (of couﬁ since the dimension of B* is N2, so the use of
the infinite terms is u ssary.

For that reason 1@? techniques apart from the “brute force” strategy
will become very u%f and they will be the subject of this section.

FirstLY, we ana¥yze some conditions under for a UDM to be approxi-
mately be approximately represented by a quantum Markov process. We
will start from a microscopic Hamiltonian and apply some approximations
leading to UDMs which fulfill the divisibility property (#Il). Note that, in
principle, as we have already said, the reduced evolution of a quantum system
is never exactly Markovian. This is because, as discussed in section [.5] there
is always a privileged time, say ty, where the both systems A and B start
to interact being then the global state a product p = p4 ® pp and defining
a UDM for pa. Since generally the global state can no longer be factorized,
and (generally) the dynamical map from there is not a UDM, the divisibility
property () is violated.
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6.1 Nakajima-Zwanzig equation

Let assume that A is our open system while B plays the role of the environ-
ment; the Hamiltonian of the whole system is given by

H=Hy+Hp+V, (71)

where H4 and Hp are the Hamiltonians which govern the local dynamics of
A and B respectively, and V stands for the interaction between both systems.

We will follow the approach initroduced by Nakajima [I01] and Zwanzig
[102] using projection operators, which is also explained in [3,20,21] among
others. In this method we define in the combined Hilberi\space “system plus
environment” H = H4 ® Hp, two orthogonal proje(;?e,n operators, P and
Q,P2="P, 0>=Q and PQ = QP =0, given by A

Pp = Trp(p) ® pﬁ (72)

o = (1-P) (73)

where p € H is the whole state of the syst Qand environment and pg € Hp

is a fixed state of the environment. In f@: we choose pp to be the physical

initial state of the environment. Strir@u’speaking this is not necessary but
i

the method becomes much more ¢ cated if one chooses another state.
In addition, we assume that the Sy§Qem B is initially in thermal equilibrium,

this is
pp = pul< e PHE[Tr (676[{3)]717

where § = 1/T. Note t %p give all necessary information about the
reduced system state Qo the knowledge of the dynamics of Pp implies

P A
that one knows the tin@olution of the reduced system.
If we start from thé&on Neumann equation (I9) for the whole system

Q dZ—g):—i[HAJrHBJrVaP(t)]a (74)

and take projection operators we get
d
Epp(t) = —iP[Ha+ Hp+V,p(t)], (75)
d :
EQP@) = —iQ[Ha+ Hp +V,p(1)]. (76)

As usual in perturbation theory we shall work in interaction picture with
respect to the free Hamiltonians

pt) = ei(HAJrHB)tp(t)e*i(HAﬂLHB)t.
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Since

eiHAt TI"B [eiHBtp(t)e_iHBt} eiHAt — eiHAt TI‘B [p(t)]eiHAt _ ﬁA(t)-

the projection operators are preserved under this operation, and equations
([73) and (76) can be written in interaction picture just like

%m) = —iPV(1), A1), (77)
%Qﬁ(t) = —iQV(1). A1) ~ (78)

Let us use the notation V(t)- = —i[V (¢), -]; the introducing the iden-
tity 1 = P + Q between V(t) and p(t) the equ s (((0) and (78) may be

rewritten as \%
%Pﬁ(t) — PYIPH( §PV )Qi(t) (79)
SO0 = QB + V0. (80)

The formal integration of the first @nese equations gives

Pp(t) = Pp(0 / &“;;V s)Pp(s / dsPV(s)Qp(s), (81)

where we have set 0 as t igin of time without losing generality. On the
other hand, the solutlor@ the second equation can be written formally as

t
Qp( 52'9 (t,0)9p(0) / dsG(t, s)QV(s)Pp(s). (82)

0
This is nothing but the operational version of variation of parameters formula

for ordinary differential equations (see for example [103,104]), where the
solution to the homogeneous equation,

d . .
53 9P(t) = QV() Qp(1),
is given by the propagator

(1, 5) — Tell 0OV,
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Inserting (82)) in (8I)) yields
PAt) — Pp(0) + /0 dsPV(sYPj(s) + /0 dsPV(s)G(s,0)0p(0)

/O ds /0 " duPV(s)G (5, u) OV (u)Pj(u). (83)

This is the integrated version of the so-called generalized Nakajima-Zwanzig
equation

—Pp(t) = PV()Pp(t) +PV(t)G(t,0Qp(0
+ / duPV(t)G(t,u QV%& (84)

Next, two assumptions are usually made. lﬁone is that PV(t)P =
this means, Qv.

PYPp =~ TealV (1) 24 @ o] @ o 090 [Tos (V05 0] & 05 =0,

for every p and then every pa, WhiCh@QpTies Trp <17(t)p3) = 0. If this is not

fulfilled (which is not the case in t s&most practical situations), provided that
pp commutes with Hp one can gpways define a new interaction Hamiltonian
with a shifted origin of the endgY for A [T0,34]). The change

V':V—TrB[VpB]@ and H'y = Hs+ Trg[Vpp] @1, (85)
makes the total Hamil@am to be the same and

TI'B [ pB] Q’TI'B |: H +HB tV/ H +HB) pB

. . 7/
zH t Tl" [ezHBtve—zHBth]e—zHAt
- o . .

o elHAt TI'B [VPB]e iH'\t TI'B [ezHBthe zHBt]

_ ez‘HI’L‘t Trp [VpB]e_iH:‘*t . ez‘HI’L‘t Trg [VpB]e_iH:‘*t =0,

as we wished.

The second assumption consists in accepting that initially p(0) = pa(0)®
pp(0), which is the necessary assumption to get a UDM. Of course some
skepticism may arise thinking that if the system B is out of our control, there
is not guaranty that this assumption is fulfilled. Nonetheless the control on
the system A is enough to assure this condition, for that it will be enough to
prepare a pure state in A, for instance by making a projective measurement
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as argued in [I05], to assure, by theorem LT that at the initial time the global
system is in a product state.

These two assumptions make to vanish the second and the third term in
equation (83), and the integro-differential equation yields

d

@Pﬁ(t) :/0 dul(t, w)Pp(u), (86)

where

K(t,u) = PV(t)G(t,u)QV(u).

If this kernel is homogeneous IC(t, u) = K(t —u), which isghe case for station-
ary states pp (as exemplified in next section), this e@n can be formally
solved by a Laplace transformation [4], but this udsa ly turns out into an
intractable problem in practice.

In order to transform this integro-differenti l%quation in an Markovian
master equation one would wish that the intéﬁ on the right hand side of
(B6]) turns into a generator of the form of or that aim, the first intuitive
guess is to try that K(¢,u) behaves as a s@a function with respect to p(u).
For that to be true the typical variation™ime 74 of p(u) (which is only due
to the interaction with B because we e removed the rest of the dynamics
by taking integration picture) has e much larger than some time 75,
which characterizes the speed at the kernel (¢, u) is decreasing when
|t —u| > 1. Of course this kin Qﬁapproximations intrinsically involve some
assumptions on the size of B/and the “strength” of the Hamiltonians, and
there is in principle no gu y that the resulting differential equation has
the form of ([G). Howew@, several works [I0GHII0] studied carefully two
limiting procedures wh 4/Tp — 00 so that this turns out to be the case.
These two limits are

3

o The weak co@z’ng limit. Let us rewrite V. — oV, where a accounts
for the strength of the interaction. Since for a small the variation of
p(u) is going to be slow, in the limit @ — 0 one would get 74 — o0,
and so 74/ — oo for every fixed 75. Of course for @« = 0 there
is not interaction, and so we will need to rescale the time parameter
appropriately before taking the limit. This is discussed in more detail
in next section 6.2

e The singular coupling limit. This corresponds to somehow the oppo-
site case; here we get 75 — 0 by making K(¢,u) to approach a delta
function. We will discuss this limit in the forthcoming section
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We should stress that one can construct Markovian models ad hoc which
try to describe a system from a microscopic picture without involving these
procedures; see for example [IT11,[112]. In this sense, these two cases are
sufficient conditions to get a Markovian evolution, but not necessary.

6.2 Weak coupling limit

As we said above, if we assume the weak coupling limit, the change of j(u)
is negligible within the typical time 75 where the kernel K(¢,u) is varying.
To perform this limit, consider again Eq. (83) under the assumptions of
PY(t)P = 0 and p(0) = pa(0) @ ps(0):

t N
Pa(t) = Pp(0) + 2 /0 ds /0 dupws)g(g@wm)m(u), (87)

where we have redefined V' — aV (so V — @&9 Since in the interaction
picture the whole state satisfies a von Neuram equation of the form

— = —iqa| (88)
we can connect the whole state at tl@ s and u (note u < s) by the unitary

solution o
S

%¥ plu) = U (s, u)p(u) U (s, u) = U(u, 5)(s).
By introducing this ope&r in the last term of (87) we find
Q_ t s
_ Pp(%Q-&2 /O ds /0 duPV(5)G (s, 1) QV (w)PU(u, )7 (s).

Now the term inside the double integral admits an expansion in powers of «
given by the time-ordered series of

G(s,u) = Te" JearQv) g,
™ ~ T S 41 ’ T S 1.7 ’
) = [ths,w)] = [Terliv ] = prenfiavier (gg)

where the adjoint is taken over every element of the expansion and 7* denotes
the antichronological time-ordering operator. This is defined similarly as T
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in (I4) but ordering in the opposite sense, this is, the operators evaluated at
later times appear first in the product. Thus, at lowest order we get

Pit) = Pp(0) + a2 / s / " duPV(s)OV(u)Pi(s) + O(a?)

_ Pp(0) +a / ds / duPV(s)V () Pi(s) + O(a®).

where we have used again that PV(t)P = 0. After a change of variable
u — s—u, writing explicitly the pro Jector P and the operators V, we conclude
that

pa(t) = pa(0) —a? /t ds /S du'Trp [f/ / u)@j} ®p3] O(a?).
v A (90)
g

6.2.1 Decomposition of V \%

In order to continue with the derivation, we \QY e the interaction Hamiltonian
as %
V= Z A@- - (91)

with AT A, and Bk = Bj,. Note t@ since VI =V, one can always chose
Ay and By, to be self-adjoint. Ind ea\assume that V' is a sum of products of
any general operators X and Y@ will be written then like

n

V= yg@@YHXk@Y,j. (92)
i

Any operator can be de@]posed as

Q_Q_ X=X +ix”,

where Q
x (@) (X,I Xk) x () i(X,I X)
F 2 F 2

are self-adjoint. This, and the same kind of decomposition for Y, = Yk(a) +
iYk(b) inserted in equation (O2) gives

V=3 (X,ga> - z’X,f”) ® (Y,j“) + iYk(b))
k=1

= 22)((“ v+ xP @v®,
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so one can make the choice

A, = 2X,§a), B = 2Yk(a), fork=1,...,n
Ay = 2X,§2n, By = 2Y,§(E)n, fork=n+1,...,2n
to arrive at (@T]).
Now we focus on the operators Ay, let us assume for the moment that

the spectrum of H 4 is discrete, and let [¢).) be an eigenstate associate with
the eigenvalue . We define

= > |l Aloer) (1o
gl —e=w 4\
\2\

where the sum is over every & and e such that tv;r difference is w. The

operator so defined is an eigenoperator of £A = Z%, with eigenvalue —iw;
indeed, {-
LAA(w) = i[Ha, Ap(w)] = 8/@ (el Apltper) (V] = —iwAp(w)-

5’ —e=w Q_
As a result, Q'

ﬁv“AL(@ iw Al (w)
N

wi @)
th A@ o)

and this holds for every k. %zfddltlon it is straightforward to verify that

§HA7 (w)] = 0. (93)

On the other hag@y'to write Aj(w) and Al (w) in the interaction picture
with respect to H @ quite easy:

GLAtAk(w) — eiHAtAk(w)e—iHAt — G_MtAk(w),
eﬁAtAL(w) _ ez‘HAtA;Kw)efiHAt _ ei“tAL(w).

Moreover, note that

D Ak(w) = Y 1) (el Arlvoer) (| = Ay,

and similarly that

> Alw) =
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Thus, by introducing these two decompositions for A in ([@I]) and taking the
interaction picture, one gets

V(t) =) e ™ Aw) @ Bi(t) = > e Al(w) ® BJ(t). (94)

w,k w,k

Now, coming back to the equation (@) the use of the above first equality
with V(s — u) and the second one with V (s) yields

pa(t) = pa(0) + « / dSZZ@” T (W)[Adw)pals), ALW)]

+ el >8r;‘;;( )[Ag (s)Al @ho (95)

Here we have introduced the quantities

I, (w) = /due“"“Tr &§sup3
_ / due Ty @ ngB}, (96)
0

3

where the last step is justified beca@ pp commutes with e8!, Next, we
take a rescaled time 7 = ot and %.a?s, obtaining
palt) = ﬁA(T/aQ) N

= da e~/ DN () [ Ag(w) (o /a?), Al ()]

b el @) Adw), alo/a®) Al )] + Ofa),

From this equatio#T see that in the limit & — 0 (keeping finite 7 and o)
the time scale of cMnge of p(7/a?) is just 7. This is merely because the
dependency with a? of ps(7/a?) enters only in the free evolution which we
remove by taking the interaction picture. The remaining time scale due to
the interaction with the environment is 7, as expressed in the above equation
(the integral runs from 0 to 7), so we write

Jim (1) = lim 47/ s (o) AT/ = (),
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and thus

ialr) = pal0)+lim [ o 3 ST T ) Ao ), AL )

a—0
w,w' kL

+ e“w-w’”/“r“/“*( AW, palo/0®) Af(w)] + O(a)
= pa(0) + lim dazzeww ST ) [Ae(w)pa(o), AL ()]

a—0
w,w' kL
n eiw’)o/ﬁr;’;a (W) [An(W), pa(0) Al (w)]. (97)

Before going further in the derivation, a mathematical result which will
be particularly useful from now on is the following.

Proposition 6.1 (Riemann-Lebesgue lemma). Let \%\be integrable in [a, b]
then , %
lim [ e“'f(t)dt \g,
T—00
Proof. There are several methods to prove @Yere we define g(t) = f(¢)[0(t—
a) — 0(t — b)| and so

/ 6 f (1) e OQe‘mg@)dt — (),

where g(z) denotes the Fourier t @form of g(t). Now it is evident that g(t)
is square integrable, then as t@)umer transform preserve norms [45] (this
is sometimes referred to as vaeval’s theorem):

% o0
Q()di = / 9(2) Pz,

Jis also square integrable and then lim, ., g(z) = 0.

Q.E.D.

which implies that g

Q

Because of this result (applied on the Banach space 9B, to be concise)
in the limit o — 0 the oscillatory factors in (Q7)) with w’ # w are going
to vanish. This so-called secular approzimation is done in the same spirit
that well known rotating wave approximation in the context of quantum

optics [20,21126]28,34]. We obtain
pa(r) = pa®) + [ o 30 Y I A)a(o). AL

b @) Adw), al0) ALw)]
= a0+ / do L [54(0)]. (98)

0
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Here the coefficients are given by the one-sided Fourier transform

Z%((AJ) = / duew“Tr [Bk(u)ngB} .
0

6.2.2 Correlation functions

In order to make convergent the above integrals, the environmental correla-
tion functions Tr [Bk (u)Byp B] have to decrease as u is increasing. However,

if we use the corresponding eigenoperator decomposition of By, for the Hamil-
tonian Hp, we find

~
Tr [ék(u)BépB] = Z e Ty [Bk(%’z?)B] ;
) \g

which shows that the correlation functions are p%odic in u and their inte-
gral extended to infinity will diverge. The o§ possible loophole to break
the periodicity is the assumption that the em B has infinite degrees of
freedom, in such a way that Hp has a cq@muous spectrum. Then every-
thing is essentially the same but the su@?' are substituted by integrals, i.e.
the decomposition in eigenoperators v@-be

B Eﬁgdwk(w), (99)

where a is the maximum eiger@ueney (it can be infinite). So the correlation

functions become Q%
Tr [Bk(@pg} :/ dwe™ " Tr [By(w)Byps] ,

—a
.

and of course now are not periodic as

lim Tr [ék(u)ngB} =0,

U— 00

because of the proposition (G.).

6.2.3 Davies’ theorem

We have just seen that a necessary condition for the weak limit to exist is that
the environmental system B has infinite degrees of freedom. However this is
not a sufficient condition because the decreasing behavior of the correlation
functions may be not fast enough for the one-sided Fourier transform to exist.
A sufficient condition was pointed out by Davies.
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Theorem 6.1 (Davies). If there exist some € > 0 such that

|
0

then the weak coupling is strictly well defined (for a bounded interaction V')
and

Tr [Bk(t)ngB} ’ (1— 1) < oo, (100)

lim €0 [pa(0)) = ¢ [pa(0)] |l = 0
a—0,7=a*t
for all pa(0) and uniformly in every finite interval [0, o], where 5(7,0) denotes
the exact reduced dynamics in the interaction picture.

Proof. To prove the condition (I00) is beyond the scope.of this work, it was

developed in [106,107]. Under (I00) the convergen‘@ he above result is

clear from equation (O8] which is the integrated verSian of

dﬁ§7<7> = Lpa(r) = pa(r) :\i; p4(0)]

QV‘ Q.E.D.

On one hand, note that the methodq?ks because there are no eigen-
frequencies, w, arbitrary close to one a;o, er, as a result of the discreteness

of the spectrum of H 4, otherwise theMecular approximation is jeopardized.
For the infinite dimensional case weM this is not satisfied, recently D. Taj
and F. Rossi [113] have proposed %‘o er approximation method which sub-
stitutes the secular approxim%’z?l and also leads to a completely positive
semigroup.

On the other hand, a portant consequence of the secular approxi-
mation is that it guarangds that the generator £ has the correct form of
a Markovian homogengds/master equation (theorem [B.I). To see this, let
us decompose the mattrces ['79(w) in sum of Hermitian and anti-Hermitian

parts Q .

[(w) = 5%@(&1) + 1Sk (w), (101)

where the coeflicients

Sualw) = T35) — T30 (@),

and
Te(w) = Tglw) + IR (w)
= / due™ " Tr [Bk(u)ngth]—l—/ due” Ty Bk(—u)ngth
0 0

— / due™ " Tr [Bk(u)ngth] : (102)

[e.e]
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form Hermitian matrices. In terms of these quantities, the generator £ can
be written as

Lpa(m)] = — i[Hys, pa(7)]
22wl [ pa(r) Al (w) - %{Azwmg(w),m(ﬂ}},

where the Hamiltonian part is given by
His=> ) Sp(w)Al(w)Ay(w). (103)
w  kJt

In order to prove that £ has the form of a generator @ arkov1an homoge-

nous evolution, it is required just to show that the fitatrix vz, (w) is positive

semidefinite for all w. This is a consequence of theg~ chner’s theorem [40,45],

which asserts that the Fourier transform of a f ction of “positive type” is a

positive quantity. Note that a function f(¢) posmve type if for any t,,

and t,, the matrix constructed as f,, = f § n) 1s positive semidefinite.
For any vector v we have

(v,yv) = Zv,’;fykg w)vy = &ueM“ZvZTr [Bk( )ngth] v

B / e %?Tf [e"12% Bre ™15 Bypy, | e
— / due@ etHsuCie ’HB“C'ph}

where C' =), Bjuy. Q_

Proposition 6.2.§?~function f(t) = Tr [efBtCle= 5t Cpy | is of “posi-
tive type” and thenNhe matrix Yie is positive semidefinite (v,yv) > 0.

Proof. The positivity of (v,vyv) > 0 follows from the Bochner’s theorem if
f(t) is of “positive type” because it is its Fourier transform. For the proof of
the first statement, let us take the trace in the eigenbasis of Hp (remember
that the spectrum is taken to be continuous):

ft) = / de (. |eP CTe™ P Cpyy | pe) = / dee'p(p:|Cle™7C|g,),
here we have used that

e P
Prn|@e) = m|%> = Pele),
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with p. > 0 since py, is a positive operator. By introducing the identity
1= fd51|<,05'><§05'|,

f(t) - /dEdglewtpa<906|CT6_iHBt|‘P6’><906’|C|906>
- / dede' e p, |(pu|Cleo) 2.

Finally we take another arbitrary vector w and the inner product

(w,fw) = Zw f(tm
= Ja gt wn@%cm

2%
= /dsda

Zw* =S | Clea)|” 2 0,
because the integrand is positive on the@le domain of integration.

Q_' Q.E.D.

As a conclusion of these resultsyi or a small, but finite «, we substitute
the exact reduced dynamics 5 £,0) \ﬁe Markovian one e£7 = ¢® Et, the error
which we make is bounded and n s to zero as a decrease provided that the
assumptions of the Davies’ t /Sem are fulfilled.

Of course one can wri 2L and immediately go back to Schrodinger
picture by using the unit§/ operator e'4! to obtain
dpal(t ,
"’;‘( ) iH, A Hs, pa(t)] (104)

@) _
D3 X0 AL - SALAL) a0)
w  kt

Note that because of (@3), the Hamiltonian Hpg commutes with Hy, so it
just produces a shift in the energy levels of the system A. Thus this is
sometimes called Lamb shift Hamiltonian. However, note that Hpg is not
only influenced by an environment in the vacuum state (zero temperature)
but also by thermal fluctuations.
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6.2.4 Explicit expressions for ~;, and Sy,

We can give explicit expressions for v, and Sg, by using the decomposition
of the operators By, in eigenoperators. For the decay rates

Ye(w) = / due™*Tr [Bk(u)ngth}

—00

= / dw’/ due’“= 1Ty [By, (W) Bypi]

= 27T/ dw'd(w — W) Tr [Bi(w') Bepin]

—a

— 27Ty [By(w) Bep] \2\\ (105)

provided that w € (—a,a). So Yx(w) is just propdgronal to the correlation
function of the eigenoperator By(w) with the sa@frequency w, unless this
frequency is outside of the spectrum of [Hpg, - \H'ren Yre(w) will be zero.

To get an explicit expression for the shiffg ¥}, is a little bit more compli-

cated. From (I0T]) we have o
<.

Skg(w) = —Zl—‘%ﬁ.ﬁ» Z'ykg(w).

2
The substitution of the decompow‘?&n in eigenoperators in I'3%(w) and the
previous result (I03]) for v ¢(w Qhe ds

Ske(w) = —1 /_Z dw'’ /Oooé@y(:’“l)””ﬁ [Bi(w")Bpp] + miTr [By(w) Bepin) -

(106)
Note that the integral% due’@=<)" in not well-defined. Similarly it hap-
pens with ffooo duei@‘)“, but we know this integral is proportional to the
delta function. T@mathematical theory which provides a meaningful in-
terpretation to these integrals is the theory of distributions or generalized
functions. Here we will not dwell on it, references [40,41] provide introduc-
tions and further results can be found in [IT4,115]. For us it is enough to
show that these integrals can have a meaning if we define them as a limit of
ordinary functions. For instance if we define

00 o) 0
/ due@=" = 1im due@—<umen 4 Jim duet @ uteu

oo e—0t Jo e—0— J_ ’

[e.9]
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by making the elementary integrals,

[ = it L
oo =0t (w—w)+ e 0 €l — (w—w)
r 7 7
= lim
e—0 (w—w)+e  e—(w—w)
2
— lm—— = 216 (w — w').

=0 €2 + (w — w')?
We identify the well-known family of functions f.(w—w’) = m which
tend to the delta function as € — 0 [I17] because for any (regular enough)
integrable function g( )

lim dwﬂ(w—w)( ) = gw), <a<<‘23u
V

So, if we do the same procedure but just with the @ sided Fourier transform
I due'™ @) we obtain in equation (00 T
] a 1 .
Sl =l | M omara " [<BZ- ) Bups) + ik [By() Bopa)

Multiplying the integral by the comp ~conjugate of the denominator we
obtain

“ Tr [By(w')B
lim dw'’ [ Bilw ) /] ~>0+/‘ dw' == Tr [Br(w') Beps]

e—0t+ J_, (w—w) +ei \2\
AN lim 2/ dw'’ W’H [Br(w') Beps]

S

_ w’) /
§ = dim [ LT B B
Q_ — an'Tr [Bg(w)Beps] -
Therefore the last@% is canceled in the shifts, which read
Ske(w) = Elir(g g dw 7)3%2Tr [Br(w")Beps] -

Now we decompose the integration interval (—a,a) in three subintervals
(—a,w—96), (w—46,w+6) and (w+ d,a) and take the limit § — 0

w—4
Swe(w) = lim [ dw' G Tr [By(w) Beps]
. ¢ (w—w’ /
-+ E,(lslil(l)_’_ is dw _(w w’)2+ QTI' [Bk( )ngB]
w46

€,0—01 w—"5
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The last integral just goes to zero because for any € as small as we want

the integrand is an integrable function without singularities. Whereas, since
lim, o+ (w(_ww_,;ie2 =& w,), the limiting process in ¢ is just the definition of

the Cauchy principal value of the integral [117]:

Ske(w) = lim {/w_édw/Tr [By(w') Beps] +/w“ AL [Bk(w’)ngB]}

5-0+ | J_q (w—w) +5 (w—w)
_ ¢ w/Tl" [Bi(w') Bepp]
— P.V. /_ad o (107)

In theory of distributions, this result is sometimes referred as Sochozki’s

formulae [I15]. N
L

6.2.5 Typical examples V

It is not worth to dwell on examples of the ap icﬁion of the above results,
as in the books are plenty of them. Just for gpke of comparison, we sketch
some of the most common cases. Q

e Two-level system damped by a batQef harmonic oscillators. The to-
tal Hamiltonian is Q_"

H = Hsys + Hbath + V Q

= oz / @ Ay + / dwh(w) (o4a, + o_a )

where o, is the corre Ydlng Pauli matrix, oy = (0, £ i0,)/2, and
a,, accounts for theQdntinuous bosonic operators [a,, al,] = 6w —
w’); where w is t equency of each mode. The upper limit wy,., is
the maximum frdQuency present in the bath of harmonic oscillators,
it could be in y provided that the coupling function h(w) decreases
fast enough. \We have taken the continuous limit from the beginning,
however it is common to do it in the course of the computation.

The interaction Hamiltonian may be written in the form V = A; ®
By + As ® By, where it is easy to check that the system operators and
their eigendecompositions are given by

A = op=0p+to0, Ai(w) =0, Ai(-wo) =04,
Ay = o,=i(oy —o0_), As(wy) = —io_, Ay(—wy) =io.

Similarly for the bath operators,

B, = / duwh(w) el — / dwB; (w),
0

Wmax
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"

with By(w) = @, Bi(—w) = @, and

Wmax

By :/ dwh(w)i(al%“) :/ dw By (w),
0

Wmax

. —ih(w)aw ih(w)al,
with By(w) = =Wt g, () = Bl
The decay rates are given by vy ¢(wo) = 27 Tr[ By (wo) Bepp], particularly
Ti(wo) = 27 Tr[Bi(wo)Bips]
- zh((,uo) / dwh(w) Tr[ay, (a, + al)ps]

)@)[n (wo) + 1].

Here J(wpy) = h*(wp) is the so-called spectra%ensmy of the bath (which
accounts for the strength of the Coupling&;er frequency) at frequency

wp and n(wp) is the mean number o%g?ﬁs in the thermal state pg of

= —h2 (wo) Tr[awoawOpB

w|>1

,q

the bath with frequency wy; i.e. thendpected number of particles of

the Bose-Einstein statistics Q_
7i(wo) :ﬁﬂo/ﬂ - 1}717
where T' is the temperatur he bath. For the rest of the elements

one obtains essentially t}}é@me

e Sotnion +1( L 1)
Similarly for ~;, @),

QQ_7( wo) = §J(W0) n(wo) ( _12 i ) :

Let us make the analog for the shifts Si,; the first element is given by

wms Ty [By(w')B
Si1(wo) = P.V./ dw’ r[By(«) Bips]

—Wmax (WO - w,)
PV /wmax dw'Tr [Br(w") Bepp]
0 (wo — ')
P.V. / T g DB (=) Beps]
0 (wo +w)

= iP.V. /meax dw' (W) [?<w/)+1 L)

wop —w')  (wo +w)

9
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and the rest of the elements are

SZQ(WO) - Sll(wo), » _ )
Sia(wo) = S5 (wo) = iP.V./O dw' J (W) [E’i‘;’zz; B (wz(j: Zﬂ)] .

For the shifts with —wy:

Su(~w0) = Sn(-wo)= PV, /wmdw( ){_( i:;+ (wi(fll,)],

Sul-w0) = Sp(-a) =2V [ %@?%+¢w el

Therefore according to (I03]) the shift Ha ﬁ)nlan is
Wmax / Wmax /
Hys = P.V./ dw'’ (( )nw) [§¥:] + P.V./ dw'(tjﬂmro_
0 0 0

— W) wo — w')
_ P.V./ R COLIC Z+P.V./ " W) (ot 1)
0 (Wo— 0 (wo—w’) 2

= <A/+%) 02, ,)\\

where A’ is the integral (/Tependmg on n(w’) which leads to a shift due
to the presence of th Yhermal field (Stark-like shift), and A is the
second integral ind dent of n(w’) which lead to a Lamb-like shift
effect. Of course the)identity 1 does not contribute to the dynamics as
it commutes wit &ny p, so we can forget it.

For the total ation we immediately obtain
dpsys(t) | wo+ A

b TI) 1[0 pualt)o = oo puslt))]

+ Thlwo) [a peys(Bo_ — %{UU+7psyS<t>}:| :

where I' = 27J (wp).

e Harmonic oscillator damped by a bath of harmonic oscillators. This case
is actually quite similar to the previous one, but the two-level system
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is now substituted by another harmonic oscillator:
H = Hsys + Hbath +V

= woala +/ dwalaw + / dwh(w) (aTaw + aal) .
0 0

The bath operators B; and By are the same as above and the system
operators are now

Al = aT + a, A1<w0) = a, Al(_w0> = aT7
Ay = ild' —a), Ay(w) = —ia, Ay(—wp) =ia'.

Thus by mimicking the previous steps we obtain \

df’%:(t) = —i[(wo + A) 02, peys(t)] V'S

# TInGe) + 1] apn (e S ala,pon(8)

1
+ Tiw) [ansysé_tgz— e puate)]
Note in this case that, on one d, the Stark-like shift A’ does not
contribute because of the com@tation rule of a and af; and, on the
other hand, the dimension system is infinite and the interaction
with the environment is ated by an unbounded operator. How-
ever as long as domain pﬁ%o lems do not arise one expects that this is

the correct approximgﬁ to the dynamics (and actually it is, see for

instance [36]). Q

Pure dephasing two-level system. In this case the interaction com-
mutes with theg&?ﬁem Hamiltonian and so the populations of the initial

system densi atrix remain invariant,

H = Hsys+Hbath+V

Wmax Wmax
= %az +/O dwal a, + /0 dwh(w)o. (a, + al) .
This is an interesting case to explore because it involves some subtleties,
but it is exactly solvable (see for example chapter 4 of [21], [116], and
references therein). The interaction Hamiltonian is decomposed as V' =
A ® B, where A = A(w = 0) = o, (0, is eigenoperator of [o,, -] with
zero eigenvalue!) and

B = / dwB(w), With{ Blw) = hw)a., for w > 0.

Wmax
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So some problem arises when we calculate the decay rates because
B(w = 0) is not well-defined. The natural solution to this is is to
understand w = 0 as a limit in such a way that

1(0) = 2 lim Tr[B(w) Bps,

but then there is a further problem. Depending on which side we ap-
proach to 0 the function Tr[B(w)Bpg| takes the value 27J(w)[n(w) + 1]
for w > 0 or 27nJ(|w|)n(Jw|) for w < 0. Thus the limit in princi-
ple would not be well-defined, except in the high temperature regime
where n(|w|) ~ n(jw|) + 1. However both limits_give the same result
provided that one assumes lim, .o J(|w|) = 0. TRisis a natural phys-
ical assumption because a mode with 0 frequégqly does not have any

energy and influence on the system. Thus gﬁw_,o J(Jw]) = 0 we find

7(0) = 27 lim J(|wNgt|w]).
w—0
Actually, since n(|w|) goes to inﬁni@Qas 1/|w| when w decreases, if
J(|w|) does not tend to zero line in w (this is called Ohmic-type
spectral density [33]) this constalQﬂ/'(O) will be either 0 or infinity. This
fact restricts quite a lot the @Ctral densities which can be treated
for the pure dephasing pro in the weak coupling framework with
significant results (which {$wdt a major problem because this model is
exactly solvable as we héve already pointed out). On the other hand,
shifts do not occur bézfse Hyg o 0,0, = 1, and finally the master

equations is Q
D

=7 |0 e (8)] +(0) [r2pa (1) = s8]

s

dp sys

6.2.6 Some remarks on the secular approximation and positivity

preserving requirement

As we have seen, the weak coupling limit provides a rigorous mathematical
procedure to derive Markovian master equations. Nonetheless, in solid state
or chemical physics the interactions are typically stronger than for electro-
magnetic environments, and it is sometimes preferred to use the perturba-
tive treatment without performing the secular approximation. However, this
method jeopardizes the positivity of the dynamics [I18] (see also [105],119])
and several tricks have been proposed to heal this drawback. For exam-
ple, one possibility is taking in consideration just the subset of the whole
possible states of the system which remain positive in the evolution [120],
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or describing the evolution by the inclusion of a “slippage” operator [121].
These proposals can be useful just in some situations; in this regard it seems
they do not work well for multipartite systems [122,[123].

We have already explained in detail the requirement of the complete pos-
itivity for a universal dynamics. The option to proceed without it may be
useful but risky, and actually the risk seems to be quite high as the positivity
of the density matrix supports the whole consistency of the quantum theory.
We believe the secular approximation should be used as it is mathematically
correct in the weak coupling limit. In case of the failure of a completely
positive semigroup to describe correctly the dynamics of the physical sys-
tem, it is probably more appropriate the use of non- kovian methods as
the “dynamical coarse graining” (see section [T.3)) W'P«Q]\/zk%reserves complete

positivity.

6.2.7 Failure of the assumption of facto&ig d dynamics

In some derivations of the weak coupling li Y}t 1s common to use the fol-
lowing argument. One makes the forma egration of the von Neumann
equation in the interaction picture (8] Q—

o give ,)
" N
<>

By iterating this equatio ice one gets

3(t) = pl0) — i fy $5(7(1), pl0)] - 0? / s / du[V(s), [V (), ()],

After taking partial trace, under the usual aforementioned assumptions of
p(0) = pa(0) ® pp(0), and Trp [f/(t)pB(O)} = 0, this equation is simplified
to

palt) = pa(0) — ? / s / " duTep [V (s), [V (u), p(w)].

Now, one argues that the system B is typically much larger than A and so,
provided that the interaction is weak, the state of B remains unperturbed by
the presence of the A, and the whole state can be approximated as p(u) ~
pa(u)®pp(u). By making this substitution in the above equation one arrives
at equation (@0) (modulo some small details which one can consult in most
of the textbooks of the references), and henceforth proceed to derive the
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Markovian master equation without any mention to projection operators,
ete.

This method can be considered as an effective model in order to obtain
equation (@0), however it does not make any sense to assume that the physical
state of the system factorizes for all times. Otherwise how would it be possible
the interaction between both subsystems?. Moreover, why not making the
substitution p(u) ~ pa(u) ® pp(u) directly in the von Neumann equation
(RY)) instead of in its integrated and iterated version?.

The validity of the substitution p(u) ~ pa(u) ® pp(u) is justified because
of the factorized initial condition and the perturbative approach of the weak
coupling limit. Of course we pointed out previously t the weak coupling
approach makes sense only if the coupling is small a; he environment has
infinite degrees of freedom. This fits in the above éﬁgument about the size
of B, but it can dismissed even by numerical gﬁlations (see [36]) that
the real total state p(u) is close to pa(u) ® pg(®). It should be therefore
be considered as an ansatz to arrive at the &ect equation rather than a
physical requirement on the evolution. Q

6.2.8 Steady state properties Q-

In this section we shall analyze the@eady state properties of the Marko-
vian master equation obtained in Qaweak coupling limit (I04]). The most
important result is that the thegé?l state of the system

& e(fHA/T)
<iégrzfrqa—HAﬂﬂ’
with the same temper@ T as the bath is a steady state. To see this one

notes that the bath carrpdlation functions satisfies the so-called Kubo-Martin-
Schwinger (KMS) &ition [124], namely

(MMMZHM@MMZﬁﬁm
1

— iHp (u+if) —iHp(u+if) ,—BHp
= T (e Tr [Bge Bre e }

- Ty [BzeiHB(thzﬂ)BkefiHB(thzﬂ)pth] — <Bg§k(u +iB3)). (108)

TI, [eiHB (u+iﬁ)BkefiHBUsz|
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By decomposing By, in eigenoperators B(w') of [Hg, |, we obtain, similarly
to (I0H), the following relation between their Fourier transforms

"}/M(w) = / duei““Tr |:Bk (u)ngth}

= / duei““Tr [Bgék (U + Zﬁ)pth:|

—00

= /dw’eﬁw,/ due’ =Ty [ B, Byy(w') pua]

—a

= 27 /a dw'e? §(w — ') Tr [BgBk(w')p,.K]
= 27™Tr [ByBy(w)puy] = 2me™™ {ﬁ(w)fﬂpth} }*
= 2™ {Tr [Bk( %

)Bepin]}
ety (—w) = e (—w) {- (109)
On the other hand, since A(w’) is an a@opera’cor of [Hy,:|, one easily
obtains the relations Q_

P AL (W) =§~'Ak<w>pzf, (110)
pRALw) LE Al (111)

)
K‘&Eceordlng to equation ([I04]). Indeed, it is

obvious that pf' commutes Wl@. he Hamiltonian part, for the remaining one
we have %

- ZZ%@% AL - S (A A) )]
- ZZ@ ) [ A AL - L) At ]
= ZZ[m(w)e—BWA;(—w)Ak(—w)—W(W)AT( )Arlw)] o

= ZZ [%k(—w)A;(—w)Ak(—w) — %g(w)AT( ) Ag(w )] th _ _0,

as the sum in w goes from —wpax 10 Whnay for some maximum difference
between energies wpay. This proves that p'f' is a steady state. Of course this
does not implies the convergency of any initial state to it (an example is the
pure dephasing equation derived in section [.2.5]). Sufficient conditions for
that were given in the section .41
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6.3 Singular coupling limit

As explained in section [6.1], the singular coupling limit is somehow the com-
plementary situation to the weak coupling limit, since in this case we get
78 — 0 by making the correlation functions to approach a delta function.
However, as a difference with the weak coupling limit, the singular coupling
limit is not so useful in practice because as its own name denotes, it requires
some “singular” situation. For that reason and for sake of comparison, we
sketch here the ideas about this method from the concepts previously defined.
For further details the reader will be referred to the literature.

There are several ways to implement the singular coupling limit, one
consists in rescaling the total Hamiltonian as [9,21,28] ™\

H=Hy+a Hp+ a—lv?@

and perform the “singular limit” by taking o — %arting from the equation
(B3) under the assumptions of PV(¢)P = 0 an ) = pa(0)®@pp(0) we have

1 t s %
Pp(t) = Pp(0) +—2/ ds/ dupb@ (s,u) OV (u)Pp(u). (112)

a” Jo 0 Q—

For a moment, let us take a look @‘ﬁe expression at first order in the

expansion of G(s,u):

Pi(t) = Pol0) + 25 [ R duPV(s)V)Pi() +Ola),
0
which we rewrite as %v.

palt) = pa(0) — f@f ds / " du V)V ()palu) @ ps]| + O(a™?).

By introducing th&eral form of the interaction Eq. (@1)),

pat) = a0+ [ s [ ducists.) [Awpa(a, A
+ Cilsou) [An(s), palw)Aw)| + 0@7),  (113)

here the correlation functions are
1 _ _
Chre(s,u) = 2 Tr[By(s)Be(u)ps)-
If we assume that pp is again some eigenstate of the free Hamiltonian we get

Ckg<8 — u) = % TI'[Bk(S — U)ngB], (114)
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and by using the eigendecomposition (Q9)) of By and taking into account the
factor =2 in the free Hamiltonian Hpg, we find

1 a _iw(s—u)
Cre(s —u) = ?/ dwe™ o= Tr[By(w)Beps]-

—a

Because the proposition [6.1], in the limit o — 0 the above integral tends to
zero as a square integrable function in * = a~2(s — u). It implies that it

tends to zero at least as o and so we expect this convergence to be faster

than the prefactor % in the correlation functions. However in the peculiar

case of s = u the correlation functions go to infinity, so indeed in this limit
they approach a delta function Cye(s —u) o< 0(s —u). NN, by making again
the change of variable u — s — u, equation (I13) re@

a0 = a0 + | ds | auCiatw) [Az$35A<s—u>,Ak<s>}
) [An(s). pals QW) Adls —w)] + O(a™)

Therefore in the limit of a — 0, we can s%'stitute u by 0 in the A, operators
and extend the integration to inﬁnitQWithout introducing an unbounded

error \\'
palt) = pa(0) + dﬁr | Adls)pals), Ax(s)]
T, [Ai(s). pa(s)An(s)] +O(a™?),
Q
where Q -
Q_ Iy = duChe(u).
Q_~ ke o kﬁ( )

We may split this I&rix in Hermitian v, = fooo duCpe(u) and anti-Hermitian
part Sk, as in equation (I0T]), and differentiate to obtain

dpa(t)
dt

= — i[His(t), p(t)]
!

+ e [ A0 A0 - 3 {00 240} + 00,

where Hyis(t) = 3, , SkeAr(t)Ag(t). Since i, has the same expression as
in (I02) with w = 0 it is always a positive semidefinite matrix and up to
second order the evolution equation has the form of a Markovian master
equation. However, from the former it is not clear what happens with the
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higher order terms; a complete treatment of them can be found in [T0SHITO],
where it is proven that they vanish. The idea behind this fact is that by
using the property that for a Gaussian state (which pp is assumed to be)
the correlation functions of any order can be written as a sum of products
of two time correlation functions (II4]). Particularly odd order correlation
functions vanish because of the condition PV ()P = 0, and we obtain a
product of deltas for even order. Actually the expansion is left only with
those products in which some time arguments appear in “overlapping order”
such as

(5(t1 — t3)(5(t2 — t4),

for ty > t3 > ty > ti, and because the time—ordereﬁ\integration in the
expansion of G(s,u) they do not give any contributi ’ﬂz\

Finally by coming back to Schrodinger pictu%&re obtain that in the
singular coupling limit %

dpa(t . \k'
dt< ) _ i[Ha +HLS7/7(t)bv~
)
+ Vke {Az/?A(ng 5 {AkAz,pA(t)}} :

note that Hyis = ), , SkeArAe does @ commute in general with Hy4.

Despite the singular coupling I8yt is not very realistic, it is possible to
find effective equations for the ution in which self-adjoint operators Ay
also appear. For example undé\hteractions with classic stochastic external
fields [108] or in the study o%?é continuous measurement processes [21L[125].

6.4 Extensions @the weak coupling limit

Here we will discus@rieﬂy some extensions of the weak coupling limit for
interacting system@he reader can consult further studies as [36] for example.
6.4.1 Weak coupling for multipartite systems

Consider two equal (for simplicity) quantum systems and their environment,
such that the total Hamiltonian is given by

H=Hy+Ha+ Hig +aV.

Here Hay (Has) is the free Hamiltonian of the subsystem 1 (2), Hg is the
free Hamiltonian of the environment and oV denotes the interaction between

the subsystems and the environment. This interaction term is assumed to
have the form V =), Ag) ® By + Agf) ® By, where Ag) (A,(f)) are operators
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acting on the subsystem 1 (2), and By on the environment. So that the
weak coupling limit for the whole state of both subsystems p;5 leads to a
Markovian master equation like

dp1a(t)

gt = —i[Ha + Hao + &*Hyg, p1a(t)] (115)

T a ZZWM { w)pra(t )AL(W) - %{AZ(W)AZ(W%PHU)}} ;

where Ay (w) are linear combinations of A,(:) and Agf) decomposed in eigenop-
erators of [H 41+ H a2, -]. Of course the form of these opexqtors depend on the
form of the coupling. For instance, suppose that we hge wo identical envi-
ronments acting locally on each subsystem V' = ® Blil) + Af) ® B 1&2)7
then we will obtain %

dpia(t & . +
pi;t( ) = —i Z[Hm + H o +a2H1(J]s),P1@.

J=1

RSP IC )[40 wé_‘%' DAL () — HAD () AP @), pa(1)

Consider now the case in whi \we perturb the free Hamiltonian of the
subsystems by an interaction t between them of the form SVis (where
[ accounts for the strength). Aqdtead of using the interaction picture with
respect to the free evolution g{ + H 4o+ Hp, the general strategy to deal with
this problem is to con&d@ e interaction picture including the interaction
between subsystems H ,Qr H o + V1o + Hp, and then proceeds with the
weak coupling method§

However if [ is @aﬂ one can follow a different route. First, taking the
interaction plcture@th respect to Ha1 + Hae + Hp, the evolution equation
for the global system is

%ﬁ(t)z—iﬁ[f/lz(t),ﬁ(t)]—ia[f/(t), pt)] = BVis()p(t) + aV(1)p(1).

Similarly to section [6.1], we take projection operators

CZPP( t) = BPVia(t)p(t) + aPVsp(t)p(t), (116)
EQﬁ(t) = [QV1a(t)p(t) + aQVsp(t)p(t), (117)
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and find the formal solution to the second equation
t
Q7(t) = 6(0,0)Q5(0) + 5 | dsG(t,5)Qia(s)Pi(s)
0

+a /t dsG(t,s)QV(s)Pp(s), (118)

where
G(t,s) = Tels W AV()+av(t)]

Now the procedure is as follows, we introduce the identity 1 = P + Q just
in the last term of equation (1G],

dt
whose formal integration yields %

Pp(t) = BPVia(t)p(t) + aPV(L)Pp(1) %’i&\g’\V )Qp(1)

t
Pot) = Pp(0) + 3 / dsPVy(s 8)\) 7d$PV )Qh(s),  (119)
here we have used the condition PV(t Q- 0. Next we insert the formal
Pé)

solution (II8)) into the last term. B suming again an initial factorized
state “subsystems®enviroment” ( = 0) we find

. N
Pit) =Pp(0) + B / APy S

/ dsdédu/cl s, u)Pplu / ds / dukCo (s, u)Pp(w),

where the kernels are Q_

/q@% —  aBPV(s)G(s, 1) QVia(u)P = 0,
Ko(u) = azPV( G(s,u)QV(u)P.

)
The first one vanishes because Via(s) commutes with P and QP = 0, and
the second kernel up to second order in v and 3 becomes

Ka(s,u) = a?PV(s)QV()P + O(a?, a%8) = a*PV(s)V(u)P + O, a?5).

Therefore the integrated equation of motion reads
t
Pi(t) = Pp(0) + B / dsPVia(s)7(s)

+ « / ds/ duPV(s)V(u)Pp(u) + O(a?, a?B).



If we consider small intercoupling 8 such that o = (3, we can neglect the
higher orders and the weak coupling procedure of this expression (c.f. section
[6.2) will lead to the usual weak coupling generator with the Hamiltonian part
BVis added. This is in Schrodinger picture

dpi12(t)

I = —i[Ha + Hapo + BVis + o Hig, p1a(t)] (120)

DD RIC ) [ A A}(0) - FALA), piale)

Compare equations (I15) and (I20).
Surprisingly, this method may provide good result@ for large S under

some conditions, see [36].

6.4.2 'Weak coupling under external dr@

Let us consider now a system A subject to external time-dependent per-
turbation [ He(t) and weakly coupled t me environment B, in such a
way that the total Hamiltonian is

H = HA+5H§?+HB+@V

In order to derive a Markovian @r equation for this system we must take
into account of a couple of d % First, since the Hamiltonian is time-
dependent the generator of tlvnaster equation will also be time-dependent,

%
0 0,

whose solution deﬁnQ_a family of propagators &, ;,) such that

ps(ta) = Euonyps(ty),
5(t3,t1) = g(t37t2)g(t2,t1)'

This family may be contractive (i.e. Markovian inhomogeneous) or just even-
tually contractive (see section [Z4]). Secondly, there is an absence of rigorous
methods to derive at a Markovian master equation (i.e. contractive family)
in the weak coupling limit when the system Hamiltonian is time-dependent,
with the exception of adiabatic regimes of external perturbations [126}[127].
Fortunately if the He(t) is periodic in ¢, it is possible to obtain Markovian
master equations, even though the complexity of the problem increases.
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On one hand, if £ is small, in the spirit of the previous section we can
expect that the introduction of SHey(t) just in the Hamiltonian part of the
evolution would provide a good approximation to the motion,

dpa(t)
dt

= —i[Ha + BHexi(t) + a®Hys, pa(t)] (121)
Pt b [ <»N>—;ﬂwmmmm@ﬂ,

which has the form of a Markovian master equation (40]).
On the other hand, for larger § the only loophole seems to work in the
interaction picture generated by the unitary propagatm\

U(tla tO) — Te_ifttol [Ha+BHext(t')]
Taking o = 0 without loss of generality, the t@hevolution equation for

p(t) = U (t,0)p(t)U(t,0) is {_
dplt) _ —ia[V(t X;)] (122)
dt § '

Following an analogous procedure WhicQwas used in section for time-
independent generators, one immedia@-y’ deals with the problem that it is
not clear whether there exists sometl@g similar to the eigenoperator decom-
position of V(t) = Ut(t,0)VU(t, N in [@4). Note however that since the
dependency of the operator He,ﬁwith t is periodical, by differentiation of
U(t,0) one obtains a differentkproblem for each A, in (@)

N
% i[AR(t), Ha + BHex(1)). (123)

with periodic terms. kind of equations can be studied with the well-
established Floquet pheory (see for example [103,0104]). Particularly it is
possible to predic ts solution is a periodic function. In such a case, the

operator in the new picture will have a formal decomposition similar to (94]),
Ap(t) = 3, Ar(w)e™*, where now Ag(w) are some operators which do not
necessarily satisfy a concrete eigenvalue problem. However note that the
importance of such a decomposition is that the operators Ap(w) are time-
independent. This allows us to follow a similar procedure to that used for
time-independent Hamiltonians with the secular approximation, and we will
obtain

dpa(t) _

0 i[a*Hyg, pa(t)]

0t Sl A OA ) AL, a0
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where Hys = >, >, Sie(w) Al (W) Ag(w) of course. By coming back to
Schrodinger picture,

DAl i 4 BH(8) + 02 His(t), pa(t)

dt
+ a3 S elw) [Axw,t)mmz(w,w — AL D A, 1), alt)} |

w  k/l

here Ap(w,t) = U(t,0)A,(w)UT(t,0). For these manipulations it is very
useful to decompose (when possible) the unitary propagator as product of
non-commuting exponential operators U(t,0) = e~ *Hote=tHt where the trans-
formation e'Ho! H (t)e~*10* = H removes the explicit t\i?}dependence of the

Hamiltonian.
A more systematic approach to this method based on the Floquet theory
can be found for instance in the work of H. -P. uer and F. Petruccione
[21,128], and in [129].

There is a very important thing to not erre. As a difference to the
usual interaction picture with respect to e-independent Hamiltonians,
the change of picture given by a time-d dent Hamiltonian can affect the
“strength” a of V in a non-trivial way.. If there exist some time, t = .
such that [|Hex ()| = oo, the V&li&f the weak coupling limit may be
jeopardized. For example one ma;fgg ain things like “1/0” inside of V().

7 Microscopic d‘és\czgiption: non-Markovian case

The microscopic descript of non-Markovian dynamics is much more in-
volved than the Mark Vibﬂ one, and developing efficient methods to deal
with it is actually an &ﬁve area of research nowadays. One of the reasons
for this difficulty is&i‘% the algebraic properties like contraction semigroups
and/or evolution families are lost and more complicated structures arise (e.g.
evolution families which are only eventually contractive). We have already
mentioned the advantages of being consistent with the UDM description if
we start from a global product state. According to section if the evo-
lution family & ) describes the evolution from s to ¢ and the initial global
product state occurs at time ty, then it must be eventually contractive from
that point, i.e. ||Eqy| < 1fort > ty. However it is possible that [|Ey || > 1
for arbitrary ¢ and s. Up to date, there is not a clear mathematical char-
acterization of evolution families which are only eventually contractive and
this makes it difficult to check whether some concrete model is consistent.
There are non-Markovian cases where the environment is made of a few
degrees of freedom (see for example [I30HI32], and references therein). This
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allows one to make efficient numerical simulations of the whole closed system
and after that, just tracing out the environmental degrees of freedom, we
obtain the desired evolution of the open system.

However when the environment is large, a numerical simulation is com-
pletely inefficient, unless the number of parameters involved in the evolution
can be reduced (for example in case of Gaussian states [36] or using numer-
ical renormalization group procedures [133/[134]). For remaining situations,
the choice of a particular technique really depends on the context. For con-
creteness, we sketch just a few of them in the following sections.

7.1 Integro-differential models ~

As we have seen in section the exact evolution &£2 reduced system can
be formally written as an integro-differential equ@ 1 (84,

%pﬁ(t) = /Ot duK(tﬁ(“)a

with a generally very complicated kerneQ_

K(t,u) = PV@-(%, u)QV(u).

Typically this kernel cannot be w?%'en in a closed form and, furthermore,
the integro-differential equatio \%‘not easily solvable. On the other hand, it
is possible to perform a pertu%tive expansion of the kernel on the strength
of V(t) and proceed furth an in the Markovian case, where the series
is shortened at the first -trivial order (for an example of this see [135]).
Of course, by making {f8s/the complete positivity of the reduced dynamics
is not usually conserye®; and one expects a similar accuracy for the time-
convolutionless m@ﬁ (at the same perturbative order) explained in the
next section, which™s simpler to solve.

As an alternative to the exact integro-differential equation, several phe-
nomenological approaches which reduce to Markovian evolution in some lim-
its has been proposed. For example, if £ is the generator of a Markovian
semigroup, an integro-differential equation can be formulated as

Y _ / Kt — ) Clp(t")]. (124)

where k(¢ — t') is some function which accounts for “memory” effects, and
simplifies the complicated Nakajima-Zwanzig kernel. Of course, in the limit
k(t—t') — §(t—t") the Markovian evolution is recovered. The possible choices
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for this kernel which assure that the solution, &£y ), is a UDM have been
studied in several works [I36HI38], being the exponential ansazt k(t —t') o
ged=Y) the most popular.

Another interesting phenomenological integro-differential model is the so-
called post-Markovian master equation, proposed by A. Shabani and D. A.

Lidar [139],
d,(()l_(tt) :E/O k(t — ) [p(1)]. (125)

It also approaches the Markovian master equation when k(t —t') — 6(t —t').
Further studies about the application of these models and the conditions to
get UDMs can be found in [T40H142]. ~N

Apart from these references, the structure of ker@which preserve com-
plete positivity has been analyzed in [143].

We should note however that, it has been r tly questioned whether
these phenomenological integro-differential equ@.ons reproduce some typical
features of non-Markovian dynamics [144]. QV*

7.2 Time-convolutionless fo¥gh

The convolution in integro—dif‘ferentié?)dels is usually an undesirable char-
acteristic because, even when the e tion can be formulated, the methods
to find its solution are complic . The idea of the time-convolutionless
(TCL) forms consist of removj his convolution from the evolution equa-
tion to end up with an ordina@a differential equation. Behind this technique
lies the property already e)@ssed in section that a UDM, &y, can be
expressed as the solution{X the differential equation (E0)

Q—Q_ dp;lt(t) = Li[pa(t)],

dEt19) o1 . .
T 5(t, o)" In general this equation generates an evolu-

tion family that is not contractive, i.e. ||Eq,4 || > 1, for some ¢, and ¢, and
so non-Markovian. However, it generates an eventually contractive family
from to, ||Eu) || < 1, as the map starting from o, Ey 4, is usually assumed
to be a UDM by hypothesis.

To formulate this class of equations from a microscopic model is not
simple, although it can been done exactly in some cases such as, for a damped
harmonic oscillator [I45,[146] or for spontaneous emission of a two level atom
[T47/T48]. In general, the recipe is resorting to a perturbative approach again.
Details of this treatment are carefully explained in the original work [149]
or in some textbooks (see [20,21] for instance). The key ingredient is to

with generator £; =
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insert the backward unitary operator U(s,t) where s < t defined in (8J),
p(s) =U(s,t)p(t), into the formal solution of the Qp(t), Eq. (82),

Qi(t) = G(t,0)Qp(0) + / dsG(t, $)QV(s)PU(s, ) (t).

Now, by introducing the identity 1 = P + Q between U(s,t) and j(t), and
after considering a factorized initial condition we obtain

[1=T(@®)]Qp(t) = T(t)Pp(t),

here
t \
T(t) = / 45G(1, 5)QV () PU(5
: R

where we have rewritten )V as a). V‘

Next, note that T(0) = 0 and Y(t)|q=0 = 0, so%'at the operator [1—Y(¢)]
may be inverted at least for not too large couptthgs and/or too large ¢. In
such a case we would obtain Q

Qp(t) = [1 - T(t)@(tww

Introducing this in the second meml&'f equation ([79), the first term van-
ishes as PV(t)P = 0, and we arrlve\' he differential equation

m@: LlPo)
where $~
We can formally write inverse operator as a geometric series

QQ_ =T =) 1)

and then the generator as

Ly = aPV(t) i T(t)P

n=1

On the other hand, T"(¢) can be expanded in powers of a by introducing the
expansions of G(t,s) and U(s,t), thus we can construct successive approxi-
mations to L£; in powers of «,

L, = Z a”ﬁ,ﬁ").
n=2

85



Here the sum starts from n = 2 because at lowest order Y (t) ~ « fot dsQV(s)P,
and

ﬁ@:/%wwmw@P:/wammw,

which leads actually to the differentiated version of equation ([@0]), as expected
at lowest order. After a little bit of algebra, the next term in the expansion
turns out to be

t t
ﬁ@:/@/ﬂmwmmme
0 s

and further terms can be calculated in the same fashiom

In addition, D. Chruscinski and A. Kossakowski N@‘have recently shown
the equivalence between integro-differential equati and TCL equations.
They connect both generators by means of a Lap\gﬁransformation showing
some kind of complementarity between both m ds. That is, if the integral
kernel is simple, the TCL generator is highly §mgular, and viceversa.

On the other hand, given a TCL equ Q)n and an initial condition at
time t(, the problem of knowing Whetheg§ solution &4,y is a UDM, ie. a
completely positive map, is an open question for the non-Markovian regime.
Note that the perturbative expansi % finite order of the TCL generator
can generally break the complete (inity (in the same fashion as a finite
perturbative expansion of a Ha &an dynamics breaks the unitary char-
acter). So the classification L generators which are just eventually
contractive from a given timvto is an important open problem in the field
of dynamics of open quant% systems. Partial solutions have been given in
the qubit case [I51] and {Q@&he case of commutative generators £, [I52/[153].
For this latter one [£;a%,] = 0, for all ¢; and s, so that the time-ordering
operator has no effe&_ d the solution is given by

Q g(t — ftto ,Ct/ dt’ )

Therefore, certainly £y, is completely positive if and only if JZ) Lydt’ has
the standard form (&II) for every final ¢.

7.3 Dynamical coarse graining method

The dynamical coarse-graining method was recently proposed by G. Schaller
and T. Brandes [I54,[155]. Thiswas suggested as away to avoid the secular
approximation under weak coupling while keeping the complete positivity in
the dynamics. Later on, this method has been used in some other works
[156,[157]. Here we briefly explain the main idea and results.

86



Consider the total Hamiltonian (7)) and the usual product initial state
p(0) = pa(0) ® pp, where pp is a stationary state of the environment. In the
interaction picture the reduced state at time ¢ is

palt) = Trs [U(1,0)p4(0) © psUT(1,0)] (126)

where

U( ) Te™ i fo dt’

is the unitary propagator, and « again accounts for the strength of the in-
teraction. Next we introduce the expansion of the propagator up to the first

non-trivial order in equation (I20])

2a(6) = pa(@) = 57 [ [ty [P0, [7 gg,m )@ ps]| +0(a),

here we have assumed again that the first or % anlshes Te[V (t)ps] = 0 like
in ([BF). Let us take a closer look to strucQ of the double time-ordered

integral o

Jox
- / m / ty ey [V lgb@m(ommaﬂ

_ /dtl/ dto0(t, @\FTB (t1), )pA(O)®pBH
+ /dtl/ dtﬁg‘ t1) TrB (ty) [V(tl),pA(O)@@pBH

= £00pa0)] P 104 0)] + L2 0]

where by expandm% double commutators we have found three kind of

terms, L 2), £ 2 The first one appears twice, it is
£® t i i
Etpa) = ~ [ [ st )T [V)pa0) @ poV 1)
0 0

+b(t2 — 1) Tr [V (01)pa(0) @ pV (t2)]

— —/Otdtl /OtdtQ[e(tl—tQHQ(tQ—tl)]

Trp [f/(tl)pA(O) ® pBV(tz)]

- —/Ot dt, /Ot dty Trp [f/(tl)pA(O) ®p3‘~/(t2)] ;
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because obviously the step functions cancel each other. Taking in account
the other analogous term (that is the corresponding to interchange t; <> o
in the double commutators) we can write the total contribution as

L7[pa(0)] = =2 Trn [Apa(0) @ pid].
where A = fo V(t')dt'.

The second term goes like

£ al0)] = / ity [ a0t~ 1 Ton [V (0) 7 ()00) ]

TrB[ L <>®pBH-
+0(ty — t) Trp { [V (ty
= TI‘B A pA(O pB} Q-
/ dt, / dt29(t1 t2 T {[V(1). V(12)](0) @ ps .
S
And similarly the remaining tel@an be expressed as
LY pa(0)] = Trp [pa(0)FpsA’]

_ /OtdQ) : dta0(t; — t3) Trp {pA(O) ® pB[V(h), V(tZ)]} :

/—/H
%
=
o
=
&
>
%
H—/

Thus, everything toQLher gives pa(t) = pa(0) + Lpa(0)] + O(a?) with

a2

L1pa0)] = =5 (£20a0)] + £ [040)] + £P [04(0)])
= —i[Higs, pa(0)] + D'[pa(0)].
Here the self-adjoint operator Hfq is
o2 [t t R .
HES = 2—/ dtl/ dt29(t1 - tg) TI"E {[V(tl), V(tz)]pB} s
tJo 0
and the “dissipative” part is given by

Dt[pA(O)] = 042 Trp |:Ap,4(0) X pBA — % {AQ,pA(O) ®pB}:| .
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By using the spectral decomposition of pg it is immediate to check that for
any fixed ¢, £' has the Kossakowski-Lindblad form (&).
Since at first order

pa(t) = (L+L9pa(0) + O(a®) = e pa(0), (127)

the “dynamical coarse graining method” consists of introducing a “coarse
graining time” 7 and defining a family of generators of semigroups by

And the corresponding family of differential equatlonQ\\
T =T &
pa(t) = L7p4(t),

which solution

oagfe (128)
will obviously coincide with m up to se@d order when taking 7 = t, this
is 71 (1) = palt). &

Therefore we have found a famil semigroups ([27) which have the
Kossakowski-Lindblad form for eve )&d give us the solution to the evolu-
tion for a particular value of 7 (7 %‘)' This implies that complete positivity
is preserved as we desire. In a on, one may want to write this evolution
as a TCL equation, i.e. to ﬁrv e generator L; such that the solution of

—pa(t) = Lilpa(?)]

@ﬁ-

Q
o
fulfills pa(t at is given as in (@0),
Q_
TS e g

dt

Particularly for large times ¢ — oo, this generator L£; approach the usual
weak coupling generator (I04]) (in the interaction picture). This is expected
because the upper limit of the integrals in the perturbative approach will
approach to infinity and the non-secular terms e/~ will disappear for
large t (because of proposition [6.1]). This is actually equivalent to what we
obtain by taking the limit a@ — 0 in the rescaled time. Details are found

in [154].
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8 Conclusion

We have reviewed in some detail the mathematical structure and the main
physical features of the dynamics of open quantum systems, and presented
the general properties of the dynamical maps underlying open system dynam-
ics. In addition, we have analyzed some mathematical properties of quantum
Markovian processes, such as their differential form or their steady states.
After that we have focused our attention on the microscopic derivations of
dynamical equations. First of all we have analyzed the Markovian case, re-
calling the weak and singular coupling procedures, as well as some of their
properties; and secondly, we have discussed briefly some methods which go
beyond Markovian evolutions.

Several interesting topics have not been tackled & This article. Examples
are influence functional techniques [21123/33[158] ~stochastic Schrodinger
equations [I5],26,160-163], or important results, S as the quantum regres-
sion theorem, which deals with the dynamics ulti-time time correlation
functions [I5 23] 26} 164, [165]. Moreover, Yﬂtly several groups have ad-
dressed the important problem of intro Qﬂg a measure to quantify the
non-Markovian character of quantum ev@'tions [T66HIT73]. However, despite
the introductory nature of this work, VQ-h'ope that it will be helpful to clarify
certain concepts and derivation pro@ures of dynamical equations in open

quantum systems, providing a us asis to study further results as well as
helping to unify the concepts a ethods employed by different communi-
ties.
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